

Oracle® Database Express Edition
2 Day Developer's Guide

11g Release 2 (11.2)

E18147-07

August 2011

Oracle Database Express Edition 2 Day Developer's Guide, 11g Release 2 (11.2)

E18147-07

Copyright © 2005, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sheila Moore

Contributors: Eric Belden, Bjorn Engsig, Nancy Greenberg, Pat Huey, Christopher Jones, Sharon Kennedy,
Simon Law, Roza Leyderman, Bryn Llewellen, Chuck Murray, Mark Townsend

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

List of ExamplesList of Tables

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions .. xii

1 Introduction

About Oracle Database Express Edition Developers .. 1-1
About This Document ... 1-1
About Oracle Database XE ... 1-2

About Schema Objects... 1-2
About Oracle Database XE Access... 1-3

About SQL*Plus .. 1-4
About SQL Developer .. 1-4
About Structured Query Language (SQL) .. 1-4
About Procedural Language/SQL (PL/SQL) .. 1-5
About Other Client Programs, Languages, and Development Tools 1-5

About Sample Schema HR ... 1-9

2 Connecting to Oracle Database Express Edition

Connecting to Oracle Database XE from SQL*Plus .. 2-1
Connecting to Oracle Database XE from SQL Developer .. 2-2
Connecting to Oracle Database XE as User HR.. 2-4

Unlocking the HR Account... 2-4
Connecting to Oracle Database XE as User HR from SQL*Plus ... 2-5
Connecting to Oracle Database XE as User HR from SQL Developer 2-5

3 Exploring Oracle Database Express Edition with SQL Developer

Tutorial: Viewing HR Schema Objects... 3-1
Tutorial: Viewing EMPLOYEES Table Properties and Data .. 3-2

4 Selecting Table Data

About Queries ... 4-1

iv

Running Queries in SQL Developer .. 4-2
Tutorial: Selecting All Columns of a Table ... 4-2
Tutorial: Selecting Specific Columns of a Table... 4-3
Displaying Selected Columns Under New Headings... 4-4
Selecting Data that Satisfies Specified Conditions ... 4-5
Specifying Conditions with Regular Expressions ... 4-7
Sorting Selected Data ... 4-11
Selecting Data from Multiple Tables .. 4-12
Using Operators and Functions in Queries.. 4-14

Using Arithmetic Operators in Queries... 4-14
Using Numeric Functions in Queries... 4-15
Using the Concatenation Operator in Queries.. 4-16
Using Character Functions in Queries ... 4-16
Using Datetime Functions in Queries .. 4-19
Using Conversion Functions in Queries .. 4-22
Using Aggregate Functions in Queries .. 4-24
Using NULL-Related Functions in Queries .. 4-28
Using CASE Expressions in Queries .. 4-29
Using the DECODE Function in Queries... 4-29

5 About DML Statements and Transactions

About Data Manipulation Language (DML) Statements ... 5-1
About the INSERT Statement... 5-1
About the UPDATE Statement... 5-4
About the DELETE Statement.. 5-5

About Transaction Control Statements .. 5-5
Committing Transactions.. 5-6
Rolling Back Transactions .. 5-7
Setting Savepoints in Transactions ... 5-9

6 Creating and Managing Schema Objects

About Data Definition Language (DDL) Statements.. 6-1
About Schema Object Names .. 6-1
Creating and Managing Tables.. 6-2

About SQL Data Types.. 6-2
Creating Tables... 6-3

Tutorial: Creating a Table with the Create Table Tool .. 6-3
Creating Tables with the CREATE TABLE Statement .. 6-4

Ensuring Data Integrity in Tables.. 6-5
About Constraint Types... 6-5
Tutorial: Adding Constraints to Existing Tables.. 6-6

Tutorial: Adding Rows to Tables with the Insert Row Tool... 6-11
Tutorial: Changing Data in Tables in the Data Pane.. 6-12
Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool 6-13
Managing Indexes... 6-14

Tutorial: Adding an Index with the Create Index Tool.. 6-14
Tutorial: Changing an Index with the Edit Index Tool .. 6-15

v

Tutorial: Dropping an Index .. 6-16
Dropping Tables.. 6-16

Creating and Managing Views ... 6-17
Creating Views .. 6-17

Tutorial: Creating a View with the Create View Tool .. 6-18
Creating Views with the CREATE VIEW Statement .. 6-18

Changing Queries in Views... 6-19
Tutorial: Changing View Names with the Rename Tool .. 6-19
Dropping Views .. 6-20

Creating and Managing Sequences ... 6-20
Tutorial: Creating a Sequence ... 6-21
Dropping Sequences ... 6-22

Creating and Managing Synonyms ... 6-22
Creating Synonyms... 6-23
Dropping Synonyms... 6-24

7 Developing Stored Subprograms and Packages

About Stored Subprograms.. 7-1
About Packages... 7-2
About PL/SQL Identifiers... 7-3
About PL/SQL Data Types.. 7-4
Creating and Managing Standalone Stored Subprograms .. 7-4

About Subprogram Structure... 7-5
Tutorial: Creating a Standalone Stored Procedure.. 7-6
Tutorial: Creating a Standalone Stored Function .. 7-8
Changing Standalone Stored Subprograms ... 7-9
Tutorial: Testing a Standalone Stored Function ... 7-10
Dropping Standalone Stored Subprograms .. 7-11

Creating and Managing Packages .. 7-11
About Package Structure.. 7-12
Tutorial: Creating a Package Specification.. 7-12
Tutorial: Changing a Package Specification.. 7-13
Tutorial: Creating a Package Body ... 7-14
Dropping a Package.. 7-15

Declaring and Assigning Values to Variables and Constants .. 7-15
Tutorial: Declaring Variables and Constants in a Subprogram ... 7-16
Ensuring that Variables, Constants, and Parameters Have Correct Data Types................... 7-17
Tutorial: Changing Declarations to Use the %TYPE Attribute .. 7-18
Assigning Values to Variables... 7-19

Assigning Values to Variables with the Assignment Operator .. 7-20
Assigning Values to Variables with the SELECT INTO Statement 7-21

Controlling Program Flow ... 7-22
About Control Statements ... 7-22
Using the IF Statement ... 7-23
Using the CASE Statement .. 7-24
Using the FOR LOOP Statement... 7-25
Using the WHILE LOOP Statement ... 7-26

vi

Using the Basic LOOP and EXIT WHEN Statements .. 7-28
Using Records and Cursors ... 7-30

About Records ... 7-30
Tutorial: Declaring a RECORD Type ... 7-31
Tutorial: Creating and Invoking a Subprogram with a Record Parameter 7-32
About Cursors ... 7-34
Using an Explicit Cursor to Retrieve Result Set Rows One at a Time..................................... 7-35
Tutorial: Using an Explicit Cursor to Retrieve Result Set Rows One at a Time 7-36
About Cursor Variables.. 7-37
Using a Cursor Variable to Retrieve Result Set Rows One at a Time...................................... 7-38
Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a Time 7-39

Using Associative Arrays ... 7-41
About Collections.. 7-42
About Associative Arrays .. 7-42
Declaring Associative Arrays .. 7-43
Populating Associative Arrays.. 7-44
Traversing Dense Associative Arrays .. 7-45
Traversing Sparse Associative Arrays ... 7-47

Handling Exceptions (Run-Time Errors) .. 7-48
About Exceptions and Exception Handlers .. 7-48
Handling Predefined Exceptions .. 7-49
Declaring and Handling User-Defined Exceptions.. 7-50

8 Using Triggers

About Triggers .. 8-1
Creating Triggers .. 8-2

About OLD and NEW Pseudorecords .. 8-3
Tutorial: Creating a Trigger that Logs Table Changes ... 8-3
Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is Inserted... 8-4
Creating an INSTEAD OF Trigger... 8-5
Tutorial: Creating Triggers that Log LOGON and LOGOFF Events ... 8-6

Changing Triggers .. 8-6
Disabling and Enabling Triggers .. 8-7
About Trigger Compilation and Dependencies ... 8-8
Dropping Triggers .. 8-8

9 Working in a Global Environment

About Globalization Support Features.. 9-1
About Language Support.. 9-2
About Territory Support ... 9-2
About Date and Time Formats... 9-2
About Calendar Formats... 9-3
About Numeric and Monetary Formats ... 9-4
About Linguistic Sorting and String Searching ... 9-4
About Length Semantics ... 9-5
About Unicode and SQL National Character Data Types ... 9-5

About Initial NLS Parameter Values .. 9-6

vii

Viewing NLS Parameter Values .. 9-6
Changing NLS Parameter Values .. 9-7

Changing NLS Parameter Values for All SQL Developer Connections 9-8
Changing NLS Parameter Values for the Current SQL Function Invocation 9-8

About Individual NLS Parameters .. 9-10
About Locale and the NLS_LANG Parameter.. 9-10
About the NLS_LANGUAGE Parameter .. 9-11
About the NLS_TERRITORY Parameter ... 9-13
About the NLS_DATE_FORMAT Parameter ... 9-14
About the NLS_DATE_LANGUAGE Parameter ... 9-16
About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters 9-17
About the NLS_CALENDAR Parameter... 9-18
About the NLS_NUMERIC_CHARACTERS Parameter... 9-19
About the NLS_CURRENCY Parameter ... 9-20
About the NLS_ISO_CURRENCY Parameter... 9-21
About the NLS_DUAL_CURRENCY Parameter ... 9-22
About the NLS_SORT Parameter ... 9-23
About the NLS_COMP Parameter.. 9-24
About the NLS_LENGTH_SEMANTICS Parameter ... 9-26

Using Unicode in Globalized Applications ... 9-27
Representing Unicode String Literals in SQL and PL/SQL ... 9-27
Avoiding Data Loss During Character-Set Conversion .. 9-28

10 Deploying an Oracle Database Express Edition Application

About Deployment Environments... 10-1
About Installation Script Files.. 10-1

About DDL Statements and Schema Object Dependencies.. 10-2
About INSERT Statements and Constraints.. 10-2

Creating Installation Script Files ... 10-3
Creating an Installation Script File with SQL Developer .. 10-4
Editing Installation Script Files that Create Sequences ... 10-6
Editing Installation Script Files that Create Triggers... 10-6
Tutorial: Creating an Installation Script File for the Sample Application 10-7

Installing the Sample Application... 10-9
Checking the Validity of an Installation... 10-10
Archiving the Installation Script Files .. 10-11

Index

viii

List of Examples

2–1 Connecting to Oracle Database from SQL*Plus ... 2-2
4–1 Displaying Selected Columns Under New Headings ... 4-4
4–2 Preserving Case and Including Spaces in Column Aliases .. 4-4
4–3 Selecting Data from One Department.. 4-5
4–4 Selecting Data from Specified Departments ... 4-5
4–5 Selecting Data for Last Names that Start with the Same Substring..................................... 4-6
4–6 Selecting Data for Last Names that Include the Same Substring... 4-6
4–7 Selecting Data that Satisfies Two Conditions ... 4-6
4–8 Selecting All Managers in the EMPLOYEES Table .. 4-7
4–9 Selecting All Employees Whose Last Names Have Double Vowels 4-8
4–10 Displaying Phone Numbers in a Different Format.. 4-8
4–11 Extracting the Street Number from Each STREET_ADDRESS .. 4-9
4–12 Counting the Number of Spaces in Each STREET_ADDRESS... 4-9
4–13 Reporting the Position of the First Space in Each STREET_ADDRESS 4-10
4–14 Sorting Selected Data by LAST_NAME ... 4-11
4–15 Sorting Selected Data by an Unselected Column.. 4-12
4–16 Selecting Data from Two Tables (Joining Two Tables) .. 4-13
4–17 Using an Arithmetic Expression in a Query .. 4-14
4–18 Rounding Numeric Data... 4-15
4–19 Truncating Numeric Data... 4-15
4–20 Concatenating Character Data ... 4-16
4–21 Changing the Case of Character Data... 4-16
4–22 Trimming Character Data... 4-17
4–23 Padding Character Data.. 4-17
4–24 Extracting Substrings from Character Data ... 4-18
4–25 Replacing Substrings in Character Data... 4-18
4–26 Displaying the Number of Months Between Dates .. 4-20
4–27 Displaying the Number of Years Between Dates .. 4-20
4–28 Displaying the Last Day of a Selected Month.. 4-20
4–29 Displaying a Date Six Months from a Selected Date .. 4-21
4–30 Displaying System Date and Time .. 4-21
4–31 Converting Dates to Characters Using a Format Template... 4-22
4–32 Converting Dates to Characters Using Standard Formats... 4-22
4–33 Converting Numbers to Characters Using a Format Template .. 4-23
4–34 Converting Characters to Numbers .. 4-23
4–35 Converting a Character String to a Date... 4-24
4–36 Converting a Character String to a Time Stamp ... 4-24
4–37 Counting the Number of Rows in Each Group ... 4-24
4–38 Counting the Number of Distinct Values in a Set ... 4-25
4–39 Using Aggregate Functions for Statistical Information.. 4-26
4–40 Limiting Aggregate Functions to Rows that Satisfy a Condition 4-27
4–41 Showing the Rank and Percentile of a Number Within a Group 4-27
4–42 Showing the Dense Rank of a Number Within a Group.. 4-27
4–43 Substituting a String for a NULL Value ... 4-28
4–44 Specifying Different Expressions for NULL and Not NULL Values 4-28
4–45 Using a CASE Expression in a Query ... 4-29
4–46 Using the DECODE Function in a Query... 4-30
5–1 Using the INSERT Statement When All Information Is Available 5-2
5–2 Using the INSERT Statement When Not All Information Is Available 5-3
5–3 Using the INSERT Statement Incorrectly .. 5-3
5–4 Using the UPDATE Statement to Add Data ... 5-4
5–5 Using the UPDATE Statement to Update Multiple Rows .. 5-4
5–6 Using the DELETE Statement ... 5-5
5–7 Committing a Transaction ... 5-7

ix

5–8 Rolling Back an Entire Transaction .. 5-8
5–9 Rolling Back a Transaction to a Savepoint .. 5-9
6–1 Creating the EVALUATIONS Table with CREATE TABLE .. 6-4
6–2 Creating the SCORES Table with CREATE TABLE... 6-4
6–3 Creating the EMP_LOCATIONS View with CREATE VIEW... 6-18
6–4 Changing the Query in the SALESFORCE View .. 6-19
7–1 Assigning Values to a Variable with Assignment Operator ... 7-20
7–2 Assigning Table Values to Variables with SELECT INTO .. 7-21
7–3 Inserting a Table Row with Values from Another Table ... 7-21
7–4 IF Statement that Determines Return Value of Function ... 7-23
7–5 CASE Statement that Determines Which String to Print ... 7-24
7–6 FOR LOOP Statement that Computes Salary After Five Years... 7-25
7–7 WHILE LOOP Statement that Computes Salary to Maximum... 7-27
7–8 Using the EXIT WHEN Statement... 7-28
7–9 Declaring Associative Arrays... 7-43
7–10 Populating Associative Arrays .. 7-45
7–11 Traversing a Dense Associative Array.. 7-46
7–12 Traversing a Sparse Associative Array... 7-47
7–13 Handling Predefined Exception NO_DATA_FOUND .. 7-49
7–14 Handling User-Defined Exceptions .. 7-50
8–1 Creating an INSTEAD OF Trigger ... 8-6
9–1 NLS_LANGUAGE Affects Month Abbreviations .. 9-11
9–2 NLS_TERRITORY Affects Currency Symbol... 9-13
9–3 NLS_TERRITORY Affects Date Formats.. 9-15
9–4 NLS_DATE_FORMAT Overrides NLS_TERRITORY .. 9-15
9–5 NLS_DATE_LANGUAGE Affects Displayed SYSDATE .. 9-17
9–6 NLS_CALENDAR Affects Displayed SYSDATE .. 9-18
9–7 NLS_NUMERIC_CHARACTERS Affects Decimal Character and Group Separator.... 9-19
9–8 NLS_CURRENCY Overrides NLS_TERRITORY.. 9-20
9–9 NLS_ISO_CURRENCY .. 9-22
9–10 NLS_SORT Affects Linguistic Sort Order .. 9-23
9–11 NLS_COMP Affects SQL Character Comparison ... 9-25
9–12 NLS_LENGTH_SEMANTICS Affects Storage of VARCHAR2 Column......................... 9-26

x

List of Tables

7–1 Cursor Attribute Values... 7-34
9–1 Initial Values of NLS Parameters in SQL Developer .. 9-6

xi

Preface

This document explains basic concepts behind application development with Oracle
Database Express Edition (Oracle Database XE). It provides instructions for using the
basic features of topics through Structured Query Language (SQL), and the Oracle
server-based procedural extension to the SQL database language, Procedural
Language/Structured Query Language (PL/SQL).

Preface topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document is intended for anyone who wants to learn about Oracle Database XE
application development, and is primarily an introduction to application development
for developers who are new to Oracle Database XE.

This document assumes that you have a general understanding of relational database
concepts and an understanding of the operating system environment that you will use
to develop applications with Oracle Database XE.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
As you become comfortable with the concepts and tasks in this document, Oracle
recommends that you consult other Oracle Database XE development documents,
especially:

xii

■ Oracle Database Express Edition 2 Day + Application Express Developer's Guide

■ Oracle Database Express Edition 2 Day + Java Developer's Guide

■ Oracle Database Express Edition 2 Day + .NET Developer's Guide for Microsoft
Windows

■ Oracle Database Express Edition 2 Day + PHP Developer's Guide

For more information, see:

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database Concepts

■ Oracle Database SQL Language Reference

■ Oracle Database PL/SQL Language Reference

Conventions
This document uses these text conventions:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

This chapter contains the following topics:

■ About Oracle Database Express Edition Developers

■ About This Document

■ About Oracle Database XE

■ About Sample Schema HR

About Oracle Database Express Edition Developers
An Oracle Database Express Edition (Oracle Database XE) developer is responsible for
creating or maintaining the database components of an application that uses the
Oracle technology stack. Oracle Database XE developers either develop applications or
convert existing applications to run in the Oracle Database XE environment.

About This Document
This document is the entry into the Oracle Database XE documentation set for
application developers. It does the following:

■ Explains the basic concepts behind development with Oracle Database XE

■ Shows how to use basic features of SQL and PL/SQL

■ Provides references to detailed information about subjects that it introduces

■ Shows, with tutorials and examples, how to develop and deploy a sample
application

Chapter 1, "Introduction," describes the reader for whom this document is intended,
outlines the organization of this document, introduces important Oracle Database XE
concepts, and describes the sample schema used in the tutorials and examples in this
document.

Chapter 2, "Connecting to Oracle Database Express Edition," explains how to connect
to Oracle Database XE.

Chapter 3, "Exploring Oracle Database Express Edition with SQL Developer," shows
how to view schema objects and the properties and data of Oracle Database XE tables.

Chapter 4, "Selecting Table Data," shows how to use queries to retrieve data from an
Oracle Database XE table.

See Also: Oracle Database Concepts for more information about the
duties of Oracle Database developers

About Oracle Database XE

1-2 Oracle Database Express Edition 2 Day Developer's Guide

Chapter 5, "About DML Statements and Transactions," introduces data manipulation
language (DML) statements and transactions. DML statements add, change, and delete
Oracle Database XE table data. A transaction is a sequence of one or more SQL
statements that Oracle Database XE treats as a unit: either all of the statements are
performed, or none of them are.

Chapter 6, "Creating and Managing Schema Objects," introduces data definition
language (DDL) statements, which create, change, and drop schema objects. The
tutorials and examples show how to create the objects for the sample application.

Chapter 7, "Developing Stored Subprograms and Packages," introduces stored
subprograms and packages, which can be used as building blocks for many different
database applications. The tutorials and examples show how to create the package of
subprograms for the sample application.

Chapter 8, "Using Triggers," introduces triggers, which are stored PL/SQL units that
automatically execute ("fire") in response to specified events. The tutorials and
examples show how to create the triggers for the sample application.

Chapter 9, "Working in a Global Environment," introduces globalization
support—National Language Support (NLS) parameters and Unicode-related features
of SQL and PL/SQL.

Chapter 10, "Deploying an Oracle Database Express Edition Application," explains
how to deploy a database application—that is, how to install it in one or more
environments where other users can run it—using the sample application as an
example.

About Oracle Database XE
Oracle Database XE groups related information into logical structures called schemas.
The logical structures are called schema objects. When you connect to the database by
providing your user name and password, you specify the schema and indicate that
you are its owner. In Oracle Database XE, the user name and the name of the schema
to which the user connects are the same.

Topics:

■ About Schema Objects

■ About Oracle Database XE Access

About Schema Objects
Every object in an Oracle Database XE belongs to only one schema, and has a unique
name with that schema.

Some of the objects that schemas can contain are:

■ Tables

Tables are the basic units of data storage in Oracle Database XE. Tables hold all
user-accessible data. Each table contains rows that represent individual data
records. Rows are composed of columns that represent the fields of the records.
For more information, see "Creating and Managing Tables" on page 6-2.

■ Indexes

Indexes are optional objects that can improve the performance of data retrieval
from tables. Indexes are created on one or more columns of a table, and are

About Oracle Database XE

Introduction 1-3

automatically maintained in the database. For more information, see "Managing
Indexes" on page 6-14.

■ Views

You can create a view that combines information from several different tables into
a single presentation. A view can rely on information from both tables and other
views. For more information, see "Creating and Managing Views" on page 6-17.

■ Sequences

When all records of a table must be distinct, you can use a sequence to generate a
serial list of unique integers for numeric columns, each of which represents the ID
of one record. For more information, see "Creating and Managing Sequences" on
page 6-20.

■ Synonyms

Synonyms are aliases for schema objects. You can use synonyms for security and
convenience; for example, to hide the ownership of an object or to simplify SQL
statements. For more information, see "Creating and Managing Synonyms" on
page 6-22.

■ Stored subprograms

Stored subprograms (also called schema-level subprograms) are procedures and
functions that are stored in the database. They can be invoked from client
applications that access the database. For more information, see "Developing
Stored Subprograms and Packages" on page 7-1.

Triggers are stored subprograms that are automatically run by the database when
specified events occur in a particular table or view. Triggers can restrict access to
specific data and perform logging. For more information, see "Using Triggers" on
page 8-1.

■ Packages

A package is a group of related subprograms, along with the explicit cursors and
variables they use, stored in the database as a unit, for continued use. Like stored
subprograms, package subprograms can be invoked from client applications that
access the database. For more information, see "Developing Stored Subprograms
and Packages" on page 7-1.

Typically, the objects that an application uses belong to the same schema.

About Oracle Database XE Access
You can access Oracle Database XE only through a client program, such as SQL*Plus
or SQL Developer. The client program's interface to Oracle Database XE is Structured
Query Language (SQL). Oracle provides an extension to SQL called Procedural
Language/SQL (PL/SQL).

Topics:

■ About SQL*Plus

■ About SQL Developer

■ About Structured Query Language (SQL)

■ About Procedural Language/SQL (PL/SQL)

See Also: Oracle Database Concepts for a comprehensive introduction
to schema objects

About Oracle Database XE

1-4 Oracle Database Express Edition 2 Day Developer's Guide

■ About Other Client Programs, Languages, and Development Tools

About SQL*Plus
SQL*Plus (pronounced sequel plus) is an interactive and batch query tool that is
installed with every Oracle Database XE installation. It has a command-line user
interface that acts as the client when connecting to the database.

SQL*Plus has its own commands and environment. In the SQL*Plus environment, you
can enter and run SQL*Plus commands, SQL statements, PL/SQL statements, and
operating system commands to perform tasks such as:

■ Formatting, performing calculations on, storing, and printing query results

■ Examining tables and object definitions

■ Developing and running batch scripts

■ Performing database administration

You can use SQL*Plus to generate reports interactively, to generate reports as batch
processes, and to output the results to text file, to screen, or to HTML file for browsing
on the Internet. You can generate reports dynamically using the HTML output facility.

You can use SQL*Plus in SQL Developer. For details, see Oracle Database SQL Developer
User's Guide.

About SQL Developer
SQL Developer (pronounced sequel developer) is a graphic version of SQL*Plus, written
in Java, that is available in the default installation of Oracle Database XE and by free
download.

The SQL Developer user interface includes a navigation frame, tools (with menus),
and a SQL Worksheet. From the SQL Worksheet, you can enter and run SQL
statements, PL/SQL statements, and SQL*Plus commands. You can do some
tasks—for example, creating a table—either in the SQL Worksheet or with the
navigation frame and tools.

To see the name and keyboard equivalent of any SQL Developer icon, position your
cursor over the icon.

About Structured Query Language (SQL)
Structured Query Language (SQL) (pronounced sequel) is the set-based, high-level
computer language with which all programs and users access data in Oracle Database
XE.

See Also:

■ "Connecting to Oracle Database XE from SQL*Plus" on page 2-1

■ SQL*Plus User's Guide and Reference for complete information
about SQL*Plus

See Also:

■ "Connecting to Oracle Database XE from SQL Developer" on
page 2-2

■ Oracle Database SQL Developer User's Guide for complete
information about SQL Developer

About Oracle Database XE

Introduction 1-5

SQL is a declarative, or nonprocedural, language; that is, it describes what to do, but
not how. You specify the desired result set (for example, the names of current
employees), but not how to get it.

About Procedural Language/SQL (PL/SQL)
Procedural Language/SQL (PL/SQL) (pronounced P L sequel) is a native Oracle
Database XE extension to SQL. It bridges the gap between declarative and imperative
program control by adding procedural elements, such as conditional control and
loops.

In PL/SQL, you can declare constants and variables, procedures and functions, types
and variables of those types, and triggers. You can handle exceptions (run-time
errors). You can create PL/SQL units—procedures, functions, packages, types, and
triggers—that are stored in the database for reuse by applications that use any of the
Oracle Database XE programmatic interfaces.

The basic unit of a PL/SQL source program is the block, which groups related
declarations and statements. A block has an optional declarative part, a required
executable part, and an optional exception-handling part.

About Other Client Programs, Languages, and Development Tools
Some other database access clients, languages, and tools that you can use to develop
applications are:

■ Oracle Application Express

■ Oracle Java Database Connectivity (JDBC)

■ Hypertext Preprocessor (PHP)

■ Oracle Call Interface (OCI)

■ Oracle C++ Call Interface (OCCI)

■ Open Database Connectivity (ODBC)

■ Pro*C/C++ Precompiler

■ Pro*COBOL Precompiler

■ Microsoft .NET Framework

■ Oracle Provider for OLE DB (OraOLEDB)

■ Oracle Objects for OLE (OO4O)

See Also:

■ Oracle Database Concepts for a complete overview of SQL

■ Oracle Database SQL Language Reference for complete information
about SQL

See Also:

■ Oracle Database Concepts for a complete overview of PL/SQL

■ Oracle Database PL/SQL Language Reference for complete
information about PL/SQL

Note: Some of the products on the preceding list do not ship with
Oracle Database XE and must be downloaded separately.

About Oracle Database XE

1-6 Oracle Database Express Edition 2 Day Developer's Guide

Oracle Application Express Oracle Application Express is an application development
and deployment tool that enables you to quickly create secure and scalable Web
applications even if you have limited previous programming experience. The
embedded Application Builder tool assembles an HTML interface or a complete
application that uses schema objects, such as tables or stored procedures, into a
collection of pages that are linked through tabs, buttons, or hypertext links.

Oracle Java Database Connectivity (JDBC) Oracle Java Database Connectivity (JDBC) is an
API that enables Java to send SQL statements to an object-relational database, such as
Oracle Database XE. Oracle Database XE JDBC provides complete support for the
JDBC 3.0 and JDBC RowSet (JSR-114) standards, advanced connection caching for both
XA and non-XA connections, exposure of SQL and PL/SQL data types to Java, and
fast SQL data access.

Hypertext Preprocessor (PHP) The Hypertext Preprocessor (PHP) is a powerful
interpreted server-side scripting language for quick Web application development.
PHP is an open source language that is distributed under a BSD-style license. PHP is
designed for embedding database access requests directly into HTML pages.

Oracle Call Interface (OCI) Oracle Call Interface (OCI) is the native C language API for
accessing Oracle Database XE directly from C applications.

The OCI Software Development Kit is also installed as part of the Oracle Instant
Client, which enables you to run applications without installing the standard Oracle
client or having an ORACLE_HOME. Your applications work without change, using
significantly less disk space.

See Also:

■ Oracle Database Concepts for more information about tools for
Oracle Database XE developers

■ Oracle Database Advanced Application Developer's Guide for
information about choosing a programming environment

See Also: Oracle Database Express Edition 2 Day + Application Express
Developer's Guide for more information about Oracle Application
Express

See Also: For more information about JDBC:

■ Oracle Database Concepts

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database Express Edition 2 Day + Java Developer's Guide

See Also: Oracle Database Express Edition 2 Day + PHP Developer's
Guide for more information about PHP

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about OCI

■ Oracle Call Interface Programmer's Guide for complete information
about OCI

About Oracle Database XE

Introduction 1-7

Oracle C++ Call Interface (OCCI) Oracle C++ Call Interface (OCCI) is the native C++
language API for accessing Oracle Database XE directly from C++ applications. Very
similar to the OCI, OCCI supports both relational and object-oriented programming
paradigms.

The OCCI Software Development Kit is also installed as part of the Oracle Instant
Client, which enables you to run applications without installing the standard Oracle
client or having an ORACLE_HOME. Your applications work without change, using
significantly less disk space.

Open Database Connectivity (ODBC) Open Database Connectivity (ODBC) is a set of
database access APIs that connect to the database, prepare, and then run SQL
statements on the database. An application that uses an ODBC driver can access
non-uniform data sources, such as spreadsheets and comma-delimited files.

The Oracle ODBC driver conforms to ODBC 3.51 specifications. It supports all core
APIs and a subset of Level 1 and Level 2 functions. Microsoft supplies the Driver
manager component for the Windows platform.

Like OCI, OCCI, and JDBC, ODBC is part of the Oracle Instant Client installation.

Pro*C/C++ Precompiler The Pro*C/C++ precompiler enables you to embed SQL
statements in a C or C++ source file. The precompiler accepts the source program as
input, translates the embedded SQL statements into standard Oracle run-time library
calls, and generates a modified source program that you can compile, link, and run.

Pro*COBOL Precompiler The Pro*COBOL precompiler enables you to embed SQL
statements in a COBOL source file. The precompiler accepts the source program as
input, translates the embedded SQL statements into standard Oracle run-time library
calls, and generates a modified source program that you can compile, link, and run.

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about OCCI

■ Oracle C++ Call Interface Programmer's Guide for complete
information about OCCI

See Also:

■ Oracle Database Concepts

■ Oracle Services for Microsoft Transaction Server Developer's Guide for
information about using the Oracle ODBC driver with Windows

■ Oracle Database Administrator's Reference for Linux and UNIX-Based
Operating Systems for information about using Oracle ODBC
driver on Linux

See Also:

■ Oracle Database Concepts for more information about Oracle
precompilers

■ Oracle Database Advanced Application Developer's Guide for more
information about the Pro*C/C++ precompiler

■ Pro*C/C++ Programmer's Guide for complete information about the
Pro*C/C++ precompiler

About Oracle Database XE

1-8 Oracle Database Express Edition 2 Day Developer's Guide

Microsoft .NET Framework

The Microsoft .NET Framework is a multilanguage environment for building,
deploying, and running applications and XML Web services. Its main components are:

■ Common Language Runtime (CLR)

The Common Language Runtime (CLR) is a language-neutral development and
run-time environment that provides services that help manage running
applications.

■ Framework Class Libraries (FCL)

The Framework Class Libraries (FCL) provide a consistent, object-oriented library
of prepackaged functionality.

Oracle Data Provider for .NET (ODP.NET)

Oracle Data Provider for .NET (ODP.NET) provides fast and efficient ADO.NET data
access from .NET applications to Oracle Database XE. ODP.NET allows developers to
take advantage of advanced Oracle Database functionality that exists in Oracle
Database XE, including SecureFiles, XML DB, and Advanced Queuing.

Oracle Developer Tools for Visual Studio (ODT)

Oracle Developer Tools for Visual Studio (ODT) is a set of application tools that
integrate with the Visual Studio environment. These tools provide graphic user
interface access to Oracle functionality, enable the user to perform a wide range of
application development tasks, and improve development productivity and ease of
use. Oracle Developer Tools supports the programming and implementation of .NET
stored procedures using Visual Basic, C#, and other .NET languages.

.NET Stored Procedures

Oracle Database Extensions for .NET is a database option for Oracle Database XE on
Windows. It makes it possible to build and run .NET stored procedures or functions
with Oracle Database for Microsoft Windows using Visual Basic .NET or Visual C#.

After building .NET procedures and functions into a .NET assembly, you can deploy
them in Oracle Database using the Oracle Deployment Wizard for .NET, a component
of the Oracle Developer Tools for Visual Studio.

Oracle Providers for ASP.NET

Oracle Providers for ASP.NET offer ASP.NET developers an easy way to store state
common to Web applications within Oracle Database XE. These providers are
modeled on existing Microsoft ASP.NET providers, sharing similar schema and
programming interfaces to provide .NET developers a familiar interface. Oracle
supports the Membership, Profile, Role, and other providers.

See Also:

■ Oracle Database Concepts for more information about Oracle
precompilers

■ Oracle Database Advanced Application Developer's Guide for more
information about the Pro*COBOL precompiler

■ Pro*COBOL Programmer's Guide for complete information about
the Pro*COBOL precompiler

About Sample Schema HR

Introduction 1-9

Oracle Provider for OLE DB (OraOLEDB) Oracle Provider for OLE DB (OraOLEDB) is an
open standard data access methodology that uses a set of Component Object Model
(COM) interfaces for accessing and manipulating different types of data. These
interfaces are available from various database providers.

Oracle Objects for OLE (OO4O) Oracle Objects for OLE (OO4O) provides easy access to
data stored in Oracle Database XE with any programming or scripting language that
supports the Microsoft COM Automation and ActiveX technology, including Visual
Basic, Visual C++, Visual Basic For Applications (VBA), IIS Active Server Pages
(VBScript and JavaScript).

About Sample Schema HR
The HR schema is a sample schema that can be installed as part of Oracle Database XE.
This schema contains information about employees—their departments, locations,
work histories, and related information. Like all schemas, the HR schema has tables,
views, indexes, procedures, functions, and other attributes of a database schema.

The examples and tutorials in this document use the HR schema.

See Also:

■ Oracle Database Express Edition 2 Day + .NET Developer's Guide for
Microsoft Windows

■ Oracle Data Provider for .NET Developer's Guide for Microsoft
Windows

■ Oracle Database Extensions for .NET Developer's Guide for Microsoft
Windows

■ Oracle Database Advanced Application Developer's Guide

See Also: Oracle Provider for OLE DB Developer's Guide for more
information about OraOLEDB

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about OO4O

■ Oracle Objects for OLE Help, and Oracle Objects for OLE C++
Class Library Help, for detailed information about Oracle Objects
for OLE

■ Oracle Database SecureFiles and Large Objects Developer's Guide for
examples of how to use Oracle Objects for OLE

■ Oracle Streams Advanced Queuing User's Guide for examples of how
to use Oracle Objects for OLE

See Also:

■ Oracle Database Sample Schemas for a complete description of the HR
schema

■ "Connecting to Oracle Database XE as User HR" on page 2-4 for
instructions for connecting to Oracle Database XE as the user HR

About Sample Schema HR

1-10 Oracle Database Express Edition 2 Day Developer's Guide

2

Connecting to Oracle Database Express Edition 2-1

2Connecting to Oracle Database Express
Edition

You can connect to Oracle Database Express Edition (Oracle Database XE) only
through a client program, such as SQL*Plus or SQL Developer.

This chapter contains the following sections:

■ Connecting to Oracle Database XE from SQL*Plus

■ Connecting to Oracle Database XE from SQL Developer

■ Connecting to Oracle Database XE as User HR

Connecting to Oracle Database XE from SQL*Plus
SQL*Plus is a client program with which you can access Oracle Database XE. This
section shows how to start SQL*Plus and connect to Oracle Database XE.

To connect to Oracle Database XE from SQL*Plus:
1. If you are on a Windows system, display a Windows command prompt.

2. At the command prompt, type sqlplus and press the key Enter.

SQL*Plus starts and prompts you for your user name.

3. Type your user name and press the key Enter.

SQL*Plus prompts you for your password.

4. Type your password and press the key Enter.

The system connects you to an Oracle Database XE instance.

You are in the SQL*Plus environment. At the SQL> prompt, you can enter and run
SQL*Plus commands, SQL statements, PL/SQL statements, and operating system
commands.

To exit SQL*Plus, type exit and press the key Enter.

Note: For steps 3 and 4 of the following procedure, you need a user
name and password.

Note: For security, your password is not visible on your screen.

Connecting to Oracle Database XE from SQL Developer

2-2 Oracle Database Express Edition 2 Day Developer's Guide

Example 2–1 starts SQL*Plus, connects to Oracle Database XE, runs a SQL SELECT
statement, and exits SQL*Plus. User input is bold.

Example 2–1 Connecting to Oracle Database from SQL*Plus

> sqlplus
SQL*Plus: Release 11.2.0.2.0 Production on Thu Feb 17 09:48:30 2011

Copyright (c) 1982, 2010, Oracle. All rights reserved.

Enter user-name: your_user_name
Enter password: your_password

Connected to:
Oracle Database 11g Express Edition Release 11.2.0.2.0 - Beta

SQL> select count(*) from employees;

 COUNT(*)

 107

SQL> exit

Disconnected from Oracle Database 11g Express Edition Release 11.2.0.2.0 - Beta
>

Connecting to Oracle Database XE from SQL Developer
SQL Developer is a client program with which you can access Oracle Database XE.
With Oracle Database XE 11g Release 2 (11.2), you must use SQL Developer version
3.0. This section assumes that SQL Developer is installed on your system, and shows
how to start it and connect to Oracle Database XE. If SQL Developer is not installed on
your system, see Oracle Database SQL Developer User's Guide for installation
instructions.

Note: Exiting SQL*Plus ends the SQL*Plus session, but does not shut
down the Oracle Database XE instance.

See Also:

■ "Connecting to Oracle Database XE as User HR from SQL*Plus"
on page 2-5

■ "About SQL*Plus" on page 1-4 for a brief description of SQL*Plus

■ SQL*Plus User's Guide and Reference for more information about
starting SQL*Plus and connecting to Oracle Database XE

Note: For the following procedure:

■ The first time you start SQL Developer on your system, you must
provide the full path to java.exe in step 1.

■ For step 4, you need a user name and password.

■ For step 6, you need a host name and port.

Connecting to Oracle Database XE from SQL Developer

Connecting to Oracle Database Express Edition 2-3

To connect to Oracle Database XE from SQL Developer:
1. Start SQL Developer.

For instructions, see Oracle Database SQL Developer User's Guide.

If this is the first time you have started SQL Developer on your system, you are
prompted to enter the full path to java.exe (for example,
C:\jdk1.5.0\bin\java.exe). Either type the full path after the prompt or browse
to it, and then press the key Enter.

The Oracle SQL Developer window opens.

2. In the navigation frame of the window, click Connections.

The Connections pane appears.

3. In the Connections pane, click the icon New Connection.

The New/Select Database Connection window opens.

4. In the New/Select Database Connection window, type the appropriate values in
the fields Connection Name, Username, and Password.

For security, the password characters that you type appear as asterisks.

Near the Password field is the check box Save Password. By default, it is
deselected. Oracle recommends accepting the default.

5. In the New/Select Database Connection window, click the tab Oracle.

The Oracle pane appears.

6. In the Oracle pane:

■ For Connection Type, accept the default (Basic).

■ For Role, accept the default.

■ In the fields Hostname and Port, either accept the defaults or type the
appropriate values.

■ Select the option SID.

■ In the SID field, type accept the default (xe).

7. In the New/Select Database Connection window, click the button Test.

The connection is tested. If the connection succeeds, the Status indicator changes
from blank to Success.

8. If the test succeeded, click the button Connect.

The New/Select Database Connection window closes. The Connections pane
shows the connection whose name you entered in the Connection Name field in
step 4.

You are in the SQL Developer environment.

To exit SQL Developer, select Exit from the File menu.

Connecting to Oracle Database XE as User HR

2-4 Oracle Database Express Edition 2 Day Developer's Guide

Connecting to Oracle Database XE as User HR
This section shows how to unlock the HR account and connect to Oracle Database XE as
the user HR, who owns the HR sample schema that the examples and tutorials in this
document use.

To do the tutorials and examples in this document, and create the sample application,
you must connect to Oracle Database XE as the user HR from SQL Developer. The HR
sample schema is the development environment for the sample application.

Topics:

■ Unlocking the HR Account

■ Connecting to Oracle Database XE as User HR from SQL*Plus

■ Connecting to Oracle Database XE as User HR from SQL Developer

Unlocking the HR Account
By default, when the HR schema is installed, the HR account is locked and its password
is expired. You can connect to Oracle Database as the user HR only if the HR account is
unlocked.

To unlock the HR account and reset its password:
1. Using SQL*Plus, connect to Oracle Database XE as a user with the ALTER USER

system privilege.

2. At the SQL> prompt, unlock the HR account and reset its password:

Note: Exiting SQL Developer ends the SQL Developer session, but
does not shut down the Oracle Database XE instance. The next time
you start SQL Developer, the connection you created using the
preceding procedure still exists. SQL Developer prompts you for the
password that you supplied in step 4 (unless you selected the check
box Save Password).

See Also:

■ "Connecting to Oracle Database XE as User HR from
SQL Developer" on page 2-5

■ "About SQL Developer" on page 1-4 for a brief description of
SQL Developer

■ Oracle Database SQL Developer User's Guide for more information
about using SQL Developer to create connections to Oracle
Database XE

Note: For the following procedure, you need the name and
password of a user who has the ALTER USER system privilege (for
example, SYSTEM).

Caution: Choose a secure password. For guidelines for securing
passwords, see Oracle Database Security Guide.

Connecting to Oracle Database XE as User HR

Connecting to Oracle Database Express Edition 2-5

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password;

The system responds:

User altered

The HR account is unlocked and its password is password.

Now you can connect to Oracle Database XE as user HR with the password password.

Connecting to Oracle Database XE as User HR from SQL*Plus
This section shows how to connect to Oracle Database XE as the user HR from
SQL*Plus, if the HR account is unlocked.

To connect to Oracle Database XE as user HR from SQL*Plus:

1. If you are connected to Oracle Database XE, close your current connection.

2. Follow the directions in "Connecting to Oracle Database XE from SQL*Plus" on
page 2-1, entering the user name HR at step 3 and the password for the HR account
at step 4.

You are now connected to Oracle Database XE as the user HR.

Connecting to Oracle Database XE as User HR from SQL Developer
This section shows how to connect to Oracle Database XE as the user HR from
SQL Developer, if the HR account is unlocked.

To connect to Oracle Database XE as user HR from SQL Developer:
Follow the directions in "Connecting to Oracle Database XE from SQL Developer" on
page 2-2, entering the following values at steps 4:

■ For Connection Name, enter hr_conn.

See Also:

■ Oracle Database 2 Day + Security Guide for information about
predefined user accounts provided by Oracle Database XE,
including HR

■ Oracle Database SQL Developer User's Guide for information about
accessing SQL*Plus within SQL Developer

■ Oracle Database Express Edition 2 Day DBA for information about
using Enterprise Manager to unlock user accounts

Note: For this task, you need the password for the HR account.

See Also: SQL*Plus User's Guide and Reference for an example of
using SQL*Plus to create an HR connection

Note: For the following procedure, you need the password for the HR
account.

Connecting to Oracle Database XE as User HR

2-6 Oracle Database Express Edition 2 Day Developer's Guide

(You can enter a different name, but the tutorials in this document assume that
you named the connection hr_conn.)

■ For Username, enter HR.

■ For Password, enter the password for the HR account.

You are now connected to Oracle Database XE as the user HR.

3

Exploring Oracle Database Express Edition with SQL Developer 3-1

3Exploring Oracle Database Express Edition
with SQL Developer

This chapter contains the following topics:

■ Tutorial: Viewing HR Schema Objects

■ Tutorial: Viewing EMPLOYEES Table Properties and Data

Tutorial: Viewing HR Schema Objects
This tutorial shows how to use SQL Developer to view the objects that belong to the HR
schema. This is called browsing the HR schema.

To browse the HR schema:
1. In the navigation frame, click the tab Connections.

The Connections pane shows the hr_conn icon. To the left of the icon is a plus sign
(+).

2. Click the plus sign.

If you are not connected to the database, the Connection Information window
opens. If you are connected to the database, the hr_conn information expands (see
the information that follows "Click OK" in step 3).

3. If the Connection Information window opens:

1. In the User Name field, enter hr.

2. In the Password field, enter the password for the user hr.

3. Click OK.

The hr_conn information expands: The plus sign becomes a minus sign, and under
the hr_conn icon, a list of schema object types appears—Tables, Views, Indexes,

Note: To do the tutorials in this document, you must be connected to
Oracle Database Express Edition (Oracle Database XE) as the user HR
from SQL Developer.

Tutorial: Viewing EMPLOYEES Table Properties and Data

3-2 Oracle Database Express Edition 2 Day Developer's Guide

and so on. (If you click the minus sign, the hr_conn information collapses: The
minus sign becomes a plus sign, and the list disappears.)

Tutorial: Viewing EMPLOYEES Table Properties and Data
This tutorial shows how to use SQL Developer to view the properties and data of the
EMPLOYEES table in the HR schema, if you are browsing the HR schema.

If you are not browsing the HR schema, follow the instructions in "Tutorial: Viewing
HR Schema Objects" on page 3-1 and then return to this topic.

To view the properties and data of the EMPLOYEES table:
1. In the Connections pane, expand Tables.

Under Tables, a list of the tables in the HR schema appears.

2. Select the table EMPLOYEES.

In the right frame of the Oracle SQL Developer window, in the Columns pane, a
list of all columns of this table appears. To the right of each column are its
properties—name, data type, and so on. (To see all column properties, move the
horizontal scroll bar to the right.)

3. In the right frame, click the tab Data.

The Data pane appears, showing a numbered list of all records in this table. (To
see more records, move the vertical scroll bar down. To see more columns of the
records, move the horizontal scroll bar to the right.)

4. In the right frame, click the tab Constraints.

The Constraints pane appears, showing a list of all constraints on this table. To the
right of each constraint are its properties—name, type, search condition, and so
on. (To see all constraint properties, move the horizontal scroll bar to the right.)

5. Explore the other properties by clicking on the appropriate tabs.

See Also:

■ "About Schema Objects" on page 1-2 for brief descriptions of the
schema object types

■ Oracle Database SQL Developer User's Guide for more information
about the SQL Developer user interface

See Also:

■ Oracle Database SQL Developer User's Guide for more information
about the SQL Developer user interface

■ Chapter 4, "Selecting Table Data," for information about using
queries to see table data

4

Selecting Table Data 4-1

4Selecting Table Data

This chapter contains the following topics:

■ About Queries

■ Running Queries in SQL Developer

■ Tutorial: Selecting All Columns of a Table

■ Tutorial: Selecting Specific Columns of a Table

■ Displaying Selected Columns Under New Headings

■ Selecting Data that Satisfies Specified Conditions

■ Specifying Conditions with Regular Expressions

■ Sorting Selected Data

■ Selecting Data from Multiple Tables

■ Using Operators and Functions in Queries

About Queries
A query, or SQL SELECT statement, selects data from one or more tables or views.

The simplest form of query has this syntax:

SELECT select_list FROM source_list

The select_list specifies the columns from which the data is to be selected, and the
source_list specifies the tables or views that have these columns.

A query nested within another SQL statement is called a subquery.

In the SQL*Plus environment, you can enter a query after the SQL> prompt.

In the SQL Developer environment, you can enter a query in the SQL Worksheet.

Note: To do the tutorials in this document, you must be connected to
Oracle Database XE as the user HR from SQL Developer.

Note: When the result of a query is displayed, records can be in any
order, unless you specify their order with the ORDER BY clause. For
more information, see "Sorting Selected Data" on page 4-11.

Running Queries in SQL Developer

4-2 Oracle Database Express Edition 2 Day Developer's Guide

Running Queries in SQL Developer
This topic explains how to run queries or other SQL statements in SQL Developer, if
you are connected to Oracle Database XE as user HR from SQL Developer.

To run queries in SQL Developer:
1. Click the icon SQL Worksheet.

Either the Select Connection window opens or the SQL Worksheet pane appears.

2. If the Select Connection window opens:

1. If the Connection field does not have the value hr_conn, select that value from
the menu.

2. Click OK.

A SQL Worksheet pane appears with a tab labeled hr_conn and two subpanes,
Worksheet and Query Builder. In the Worksheet, you can enter a SQL statement.

3. In the Worksheet, type a query (a SELECT statement).

4. Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing
the query result.

5. Under the hr_conn tab, click the icon Clear.

The query disappears, and you can enter another SQL statement in the Worksheet.
When you run another SQL statement, its result appears in the Query Result pane,
replacing the result of the previously run SQL statement.

Tutorial: Selecting All Columns of a Table
This tutorial shows how to select all columns of the EMPLOYEES table.

To select all columns of the EMPLOYEES Table:
1. If a SQL Worksheet pane with the tab hr_conn is there, select it. Otherwise, click

the icon SQL Worksheet, as in "Running Queries in SQL Developer" on page 4-2.

2. In the Worksheet, enter this query:

SELECT * FROM EMPLOYEES;

See Also:

■ Oracle Database SQL Language Reference for more information
about queries and subqueries

■ Oracle Database SQL Language Reference for more information
about the SELECT statement

■ SQL*Plus User's Guide and Reference for more information about
the SQL*Plus command line interface

■ Oracle Database SQL Developer User's Guide for information about
using the SQL Worksheet in SQL Developer

See Also: Oracle Database SQL Developer User's Guide for information
about using the SQL Worksheet in SQL Developer

Tutorial: Selecting Specific Columns of a Table

Selecting Table Data 4-3

3. Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing all
columns of the EMPLOYEES table.

Tutorial: Selecting Specific Columns of a Table
This tutorial shows how to select only the columns FIRST_NAME, LAST_NAME, and
DEPARTMENT_ID of the EMPLOYEES table.

To select only FIRST_NAME, LAST_NAME, and DEPARTMENT_ID:
1. If a SQL Worksheet pane with the tab hr_conn is there, select it. Otherwise, click

the icon SQL Worksheet, as in "Running Queries in SQL Developer" on page 4-2.

2. In the Worksheet, enter this query:

SELECT FIRST_NAME, LAST_NAME, DEPARTMENT_ID
FROM EMPLOYEES;

3. Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing
the results of the query, which are similar to:

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Donald OConnell 50
Douglas Grant 50
Jennifer Whalen 10
Michael Hartstein 20
Pat Fay 20
Susan Mavris 40
Hermann Baer 70
Shelley Higgins 110
William Gietz 110
Steven King 90
Neena Kochhar 90

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Lex De Haan 90
...
Kevin Feeney 50

107 rows selected.

Caution: Be very careful about using SELECT * on tables with
columns that store sensitive data, such as passwords or credit card
information.

See Also: "Tutorial: Viewing EMPLOYEES Table Properties and
Data" on page 3-2 for information about another way to view table
data with SQL Developer

Displaying Selected Columns Under New Headings

4-4 Oracle Database Express Edition 2 Day Developer's Guide

Displaying Selected Columns Under New Headings
When query results are displayed, the default column heading is the column name. To
display a column under a new heading, specify the new heading (alias) immediately
after the name of the column. The alias renames the column for the duration of the
query, but does not change its name in the database.

The query in Example 4–1 selects the same columns as the query in Tutorial: Selecting
Specific Columns of a Table, but it also specifies aliases for them. Because the aliases
are not enclosed in double quotation marks, they are displayed in uppercase letters.

Example 4–1 Displaying Selected Columns Under New Headings

SELECT FIRST_NAME First, LAST_NAME last, DEPARTMENT_ID DepT
FROM EMPLOYEES;

Result is similar to:

FIRST LAST DEPT
-------------------- ------------------------- ----------
Donald OConnell 50
Douglas Grant 50
Jennifer Whalen 10
Michael Hartstein 20
Pat Fay 20
Susan Mavris 40
Hermann Baer 70
Shelley Higgins 110
William Gietz 110
Steven King 90
Neena Kochhar 90

FIRST LAST DEPT
-------------------- ------------------------- ----------
Lex De Haan 90
...
Kevin Feeney 50

107 rows selected.

If you enclose column aliases in double quotation marks, case is preserved, and the
aliases can include spaces, as in Example 4–2.

Example 4–2 Preserving Case and Including Spaces in Column Aliases

SELECT FIRST_NAME "Given Name", LAST_NAME "Family Name"
FROM EMPLOYEES;

Result is similar to:

Given Name Family Name
-------------------- -------------------------
Donald OConnell
Douglas Grant
Jennifer Whalen
Michael Hartstein
Pat Fay
Susan Mavris
Hermann Baer
Shelley Higgins
William Gietz

Selecting Data that Satisfies Specified Conditions

Selecting Table Data 4-5

Steven King
Neena Kochhar

Given Name Family Name
-------------------- -------------------------
Lex De Haan
...
Kevin Feeney

107 rows selected.

Selecting Data that Satisfies Specified Conditions
To select only data that matches a specified condition, include the WHERE clause in the
SELECT statement. The condition in the WHERE clause can be any SQL condition (for
information about SQL conditions, see Oracle Database SQL Language Reference).

The query in Example 4–3 selects data only for employees in department 90.

Example 4–3 Selecting Data from One Department

SELECT FIRST_NAME, LAST_NAME, DEPARTMENT_ID
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 90;

Result is similar to:

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Steven King 90
Neena Kochhar 90
Lex De Haan 90

The query in Example 4–4 selects data only for employees in departments 100, 110,
and 120.

Example 4–4 Selecting Data from Specified Departments

SELECT FIRST_NAME, LAST_NAME, DEPARTMENT_ID
FROM EMPLOYEES
WHERE DEPARTMENT_ID IN (100, 110, 120);

Result is similar to:

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
John Chen 100
Daniel Faviet 100
William Gietz 110
Nancy Greenberg 100
Shelley Higgins 110
Luis Popp 100
Ismael Sciarra 100
Jose Manuel Urman 100

8 rows selected.

See Also: Oracle Database SQL Language Reference for more
information about the SELECT statement, including the column alias
(c_alias)

Selecting Data that Satisfies Specified Conditions

4-6 Oracle Database Express Edition 2 Day Developer's Guide

There are no employees in department 120.

The query in Example 4–5 selects data only for employees whose last names start with
"Ma".

Example 4–5 Selecting Data for Last Names that Start with the Same Substring

SELECT FIRST_NAME, LAST_NAME
FROM EMPLOYEES
WHERE LAST_NAME LIKE 'Ma%';

Result is similar to:

FIRST_NAME LAST_NAME
-------------------- -------------------------
Jason Mallin
Steven Markle
James Marlow
Mattea Marvins
Randall Matos
Susan Mavris

6 rows selected.

The query in Example 4–6 selects data only for employees whose last names include
"ma".

Example 4–6 Selecting Data for Last Names that Include the Same Substring

SELECT FIRST_NAME, LAST_NAME
FROM EMPLOYEES
WHERE LAST_NAME LIKE '%ma%';

Result is similar to:

FIRST_NAME LAST_NAME
-------------------- -------------------------
Sundita Kumar
Jose Manuel Urman
Shanta Vollman

The query in Example 4–7 tests for two conditions—whether the salary is at least
11000, and whether the commission percentage is not null.

Example 4–7 Selecting Data that Satisfies Two Conditions

SELECT FIRST_NAME, LAST_NAME, SALARY, COMMISSION_PCT "%"
FROM EMPLOYEES
WHERE (SALARY >= 11000) AND (COMMISSION_PCT IS NOT NULL);

Result is similar to:

FIRST_NAME LAST_NAME SALARY %
-------------------- ------------------------- ---------- ----------
John Russell 14000 .4
Karen Partners 13500 .3
Alberto Errazuriz 12000 .3
Gerald Cambrault 11000 .3
Lisa Ozer 11500 .25
Ellen Abel 11000 .3

Specifying Conditions with Regular Expressions

Selecting Table Data 4-7

6 rows selected.

Specifying Conditions with Regular Expressions
As stated in "Selecting Data that Satisfies Specified Conditions" on page 4-5, the
condition in the WHERE clause can be any SQL condition. This topic shows how to
specify conditions with SQL functions that accept regular expressions. A regular
expression defines a search pattern, using metacharacters to specify search algorithms
and literals to specify characters.

Suppose that you want to select all managers in the EMPLOYEES table. The JOB_ID of a
manager ends with either '_MGR' or '_MAN', depending on the department. Therefore,
the search pattern must be a regular expression, and you must use the REGEXP_LIKE
function, as in Example 4–8.

In the regular expression (_m[an|gr]), the metacharacter | indicates the OR condition.
The third function parameter, 'i', specifies that the match is case-insensitive.

Example 4–8 Selecting All Managers in the EMPLOYEES Table

SELECT FIRST_NAME, LAST_NAME, JOB_ID
FROM EMPLOYEES
WHERE REGEXP_LIKE(JOB_ID, '(_m[an|gr])', 'i');

Result is similar to:

FIRST_NAME LAST_NAME JOB_ID
-------------------- ------------------------- ----------
Michael Hartstein MK_MAN
Shelley Higgins AC_MGR
Nancy Greenberg FI_MGR
Den Raphaely PU_MAN
Matthew Weiss ST_MAN
Adam Fripp ST_MAN
Payam Kaufling ST_MAN
Shanta Vollman ST_MAN
Kevin Mourgos ST_MAN
John Russell SA_MAN
Karen Partners SA_MAN

FIRST_NAME LAST_NAME JOB_ID
-------------------- ------------------------- ----------
Alberto Errazuriz SA_MAN
Gerald Cambrault SA_MAN
Eleni Zlotkey SA_MAN

14 rows selected.

Suppose that you want to select every employee whose last name has a double vowel
(two adjacent occurrences of the same vowel). Example 4–9 shows how you can do
this.

See Also:

■ Oracle Database SQL Language Reference for more information
about the SELECT statement, including the WHERE clause

■ Oracle Database SQL Language Reference for more information
about SQL conditions

Specifying Conditions with Regular Expressions

4-8 Oracle Database Express Edition 2 Day Developer's Guide

The regular expression ([AEIOU]) represents any vowel. The metacharacter \1
represents the first (and in this case, only) regular expression. The third function
parameter, 'i', specifies that the match is case-insensitive.

Example 4–9 Selecting All Employees Whose Last Names Have Double Vowels

SELECT FIRST_NAME, LAST_NAME
FROM EMPLOYEES
WHERE REGEXP_LIKE(LAST_NAME, '([AEIOU])\1', 'i');

Result is similar to:

FIRST_NAME LAST_NAME
-------------------- -------------------------
Harrison Bloom
Lex De Haan
Kevin Feeney
Ki Gee
Nancy Greenberg
Danielle Greene
Alexander Khoo
David Lee

8 rows selected.

Suppose that, in the displayed query results, you want to replace phone numbers that
are stored in the format nnn.nnn.nnnn with their equivalents in the format (nnn)
nnn-nnnn. You can use the REGEXP_REPLACE function, with regular expressions in the
search pattern (the stored format) and references to those regular expressions in the
replace string (the display format), as in Example 4–10.

The search pattern has three regular expressions, each of which is enclosed in
parentheses. The metacharacter [[:digit:]] represents a digit, the metacharacter {n}
specifies n occurrences, and the metacharacter \ is an escape character. The character
immediately after an escape character is interpreted as a literal. Without the escape
character, the metacharacter . represents any character.

The replace string uses \1, \2, and \3 to represent the first, second, and third regular
expressions in the search pattern, respectively. (In the replace string, \ is not an escape
character.)

Example 4–10 Displaying Phone Numbers in a Different Format

SELECT PHONE_NUMBER "Old Format",
REGEXP_REPLACE(PHONE_NUMBER,
'([[:digit:]]{3})\.([[:digit:]]{3})\.([[:digit:]]{4})',
'(\1) \2-\3') "New Format"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 90;

Result is similar to:

Old Format New Format
-------------------- ---
515.123.4567 (515) 123-4567
515.123.4568 (515) 123-4568
515.123.4569 (515) 123-4569

Suppose that you want to extract the street number from each STREET_ADDRESS in the
LOCATIONS table. Some street numbers include hyphens, so the search pattern must use

Specifying Conditions with Regular Expressions

Selecting Table Data 4-9

a regular expression, and you must use the REGEXP_SUBSTR function, as in
Example 4–11.

Example 4–11 Extracting the Street Number from Each STREET_ADDRESS

COLUMN Number FORMAT A8
SELECT STREET_ADDRESS "Address",
REGEXP_SUBSTR(STREET_ADDRESS, '[[:digit:]-]+') "Number"
FROM LOCATIONS;
COLUMN Number CLEAR

Result is similar to:

Address Number
-- --------
1297 Via Cola di Rie 1297
93091 Calle della Testa 93091
2017 Shinjuku-ku 2017
9450 Kamiya-cho 9450
2014 Jabberwocky Rd 2014
2011 Interiors Blvd 2011
2007 Zagora St 2007
2004 Charade Rd 2004
147 Spadina Ave 147
6092 Boxwood St 6092
40-5-12 Laogianggen 40-5-12

Address Number
-- --------
1298 Vileparle (E) 1298
12-98 Victoria Street 12-98
198 Clementi North 198
8204 Arthur St 8204
Magdalen Centre, The Oxford Science Park
9702 Chester Road 9702
Schwanthalerstr. 7031 7031
Rua Frei Caneca 1360 1360
20 Rue des Corps-Saints 20
Murtenstrasse 921 921
Pieter Breughelstraat 837 837

Address Number
-- --------
Mariano Escobedo 9991 9991

23 rows selected.

To count the number of spaces in each STREET_ADDRESS, you can use the REGEXP_COUNT
function, as in Example 4–12.

Example 4–12 Counting the Number of Spaces in Each STREET_ADDRESS

SELECT STREET_ADDRESS,
REGEXP_COUNT(STREET_ADDRESS, ' ') "Number of Spaces"
FROM LOCATIONS;

Result is similar to:

STREET_ADDRESS Number of Spaces
-- ----------------
1297 Via Cola di Rie 4

Specifying Conditions with Regular Expressions

4-10 Oracle Database Express Edition 2 Day Developer's Guide

93091 Calle della Testa 3
2017 Shinjuku-ku 1
9450 Kamiya-cho 1
2014 Jabberwocky Rd 2
2011 Interiors Blvd 2
2007 Zagora St 2
2004 Charade Rd 2
147 Spadina Ave 2
6092 Boxwood St 2
40-5-12 Laogianggen 1

STREET_ADDRESS Number of Spaces
-- ----------------
1298 Vileparle (E) 2
12-98 Victoria Street 2
198 Clementi North 2
8204 Arthur St 2
Magdalen Centre, The Oxford Science Park 5
9702 Chester Road 2
Schwanthalerstr. 7031 1
Rua Frei Caneca 1360 4
20 Rue des Corps-Saints 3
Murtenstrasse 921 1
Pieter Breughelstraat 837 2

STREET_ADDRESS Number of Spaces
-- ----------------
Mariano Escobedo 9991 2

23 rows selected.

To report the position of the first space in each STREET_ADDRESS, you can use the
REGEXP_INSTR function, as in Example 4–13.

Example 4–13 Reporting the Position of the First Space in Each STREET_ADDRESS

SELECT STREET_ADDRESS,
REGEXP_INSTR(STREET_ADDRESS, ' ') "First Space"
FROM LOCATIONS;

Result is similar to:

STREET_ADDRESS First Space
-- -----------
1297 Via Cola di Rie 5
93091 Calle della Testa 6
2017 Shinjuku-ku 5
9450 Kamiya-cho 5
2014 Jabberwocky Rd 5
2011 Interiors Blvd 5
2007 Zagora St 5
2004 Charade Rd 5
147 Spadina Ave 4
6092 Boxwood St 5
40-5-12 Laogianggen 8

STREET_ADDRESS First Space
-- -----------
1298 Vileparle (E) 5
12-98 Victoria Street 6
198 Clementi North 4

Sorting Selected Data

Selecting Table Data 4-11

8204 Arthur St 5
Magdalen Centre, The Oxford Science Park 9
9702 Chester Road 5
Schwanthalerstr. 7031 17
Rua Frei Caneca 1360 4
20 Rue des Corps-Saints 3
Murtenstrasse 921 14
Pieter Breughelstraat 837 7

STREET_ADDRESS First Space
-- -----------
Mariano Escobedo 9991 8

23 rows selected.

Sorting Selected Data
When the results of a query are displayed, records can be in any order, unless you
specify their order with the ORDER BY clause.

The results of the query in Example 4–14 are sorted by LAST_NAME, in ascending order
(the default).

Alternatively, in SQL Developer, you can omit the ORDER BY clause and double-click
the name of the column to sort.

Example 4–14 Sorting Selected Data by LAST_NAME

SELECT FIRST_NAME, LAST_NAME, HIRE_DATE
FROM EMPLOYEES
ORDER BY LAST_NAME;

Result:

FIRST_NAME LAST_NAME HIRE_DATE
-------------------- ------------------------- ---------
Ellen Abel 11-MAY-96
Sundar Ande 24-MAR-00
Mozhe Atkinson 30-OCT-97

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about using regular expressions in database
applications

■ Oracle Database SQL Language Reference for syntax of regular
expressions

■ Oracle Database SQL Language Reference for more information
about the REGEXP_LIKE expression

■ Oracle Database SQL Language Reference for more information
about the REGEXP_REPLACE expression

■ Oracle Database SQL Language Reference for more information
about the REGEXP_SUBSTR expression

■ Oracle Database SQL Language Reference for more information
about the REGEXP_COUNT expression

■ Oracle Database SQL Language Reference for more information
about the REGEXP_INSTR expression

Selecting Data from Multiple Tables

4-12 Oracle Database Express Edition 2 Day Developer's Guide

David Austin 25-JUN-97
Hermann Baer 07-JUN-94
Shelli Baida 24-DEC-97
Amit Banda 21-APR-00
Elizabeth Bates 24-MAR-99
...
FIRST_NAME LAST_NAME HIRE_DATE
-------------------- ------------------------- ---------
Jose Manuel Urman 07-MAR-98
Peter Vargas 09-JUL-98
Clara Vishney 11-NOV-97
Shanta Vollman 10-OCT-97
Alana Walsh 24-APR-98
Matthew Weiss 18-JUL-96
Jennifer Whalen 17-SEP-87
Eleni Zlotkey 29-JAN-00

107 rows selected

The sort criterion need not be included in the select list, as Example 4–15 shows.

Example 4–15 Sorting Selected Data by an Unselected Column

SELECT FIRST_NAME, HIRE_DATE
FROM EMPLOYEES
ORDER BY LAST_NAME;

Result:

FIRST_NAME HIRE_DATE
-------------------- ---------
Ellen 11-MAY-96
Sundar 24-MAR-00
Mozhe 30-OCT-97
David 25-JUN-97
Hermann 07-JUN-94
Shelli 24-DEC-97
Amit 21-APR-00
Elizabeth 24-MAR-99
...
FIRST_NAME HIRE_DATE
-------------------- ---------
Jose Manuel 07-MAR-98
Peter 09-JUL-98
Clara 11-NOV-97
Shanta 10-OCT-97
Alana 24-APR-98
Matthew 18-JUL-96
Jennifer 17-SEP-87
Eleni 29-JAN-00

107 rows selected.

Selecting Data from Multiple Tables
Suppose that you want to select the FIRST_NAME, LAST_NAME, and DEPARTMENT_NAME of
every employee. FIRST_NAME and LAST_NAME are in the EMPLOYEES table, and

See Also: Oracle Database SQL Language Reference for more
information about the SELECT statement, including the ORDER BY clause

Selecting Data from Multiple Tables

Selecting Table Data 4-13

DEPARTMENT_NAME is in the DEPARTMENTS table. Both tables have DEPARTMENT_ID. You
can use the query in Example 4–16. Such a query is called a join.

Example 4–16 Selecting Data from Two Tables (Joining Two Tables)

SELECT EMPLOYEES.FIRST_NAME "First",
EMPLOYEES.LAST_NAME "Last",
DEPARTMENTS.DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID;

Result:

First Last Dept. Name
-------------------- ------------------------- ------------------------------
Jennifer Whalen Administration
Michael Hartstein Marketing
Pat Fay Marketing
Den Raphaely Purchasing
Karen Colmenares Purchasing
Alexander Khoo Purchasing
Shelli Baida Purchasing
Sigal Tobias Purchasing
Guy Himuro Purchasing
Susan Mavris Human Resources
Donald OConnell Shipping

First Last Dept. Name
-------------------- ------------------------- ------------------------------
Douglas Grant Shipping
...
Shelley Higgins Accounting

106 rows selected.

Table-name qualifiers are optional for column names that appear in only one table of a
join, but are required for column names that appear in both tables. The following
query is equivalent to the query in Example 4–16:

SELECT FIRST_NAME "First",
LAST_NAME "Last",
DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID;

To make queries that use qualified column names more readable, use table aliases, as
in the following example:

SELECT FIRST_NAME "First",
LAST_NAME "Last",
DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES e, DEPARTMENTS d
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID;

Although you create the aliases in the FROM clause, you can use them earlier in the
query, as in the following example:

SELECT e.FIRST_NAME "First",
e.LAST_NAME "Last",
d.DEPARTMENT_NAME "Dept. Name"
FROM EMPLOYEES e, DEPARTMENTS d

Using Operators and Functions in Queries

4-14 Oracle Database Express Edition 2 Day Developer's Guide

WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID;

Using Operators and Functions in Queries
The select_list of a query can include SQL expressions, which can include SQL
operators and SQL functions. These operators and functions can have table data as
operands and arguments. The SQL expressions are evaluated, and their values appear
in the results of the query.

Topics:

■ Using Arithmetic Operators in Queries

■ Using Numeric Functions in Queries

■ Using the Concatenation Operator in Queries

■ Using Character Functions in Queries

■ Using Datetime Functions in Queries

■ Using Conversion Functions in Queries

■ Using Aggregate Functions in Queries

■ Using NULL-Related Functions in Queries

■ Using CASE Expressions in Queries

■ Using the DECODE Function in Queries

Using Arithmetic Operators in Queries
SQL supports the basic arithmetic operators: + (addition), - (subtraction), *
(multiplication), and / (division).

The query in Example 4–17 displays LAST_NAME, SALARY (monthly pay), and annual
pay for each employee in department 90, in descending order of SALARY.

Example 4–17 Using an Arithmetic Expression in a Query

SELECT LAST_NAME,
SALARY "Monthly Pay",
SALARY * 12 "Annual Pay"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 90
ORDER BY SALARY DESC;

Result:

LAST_NAME Monthly Pay Annual Pay
------------------------- ----------- ----------
King 24000 288000

See Also: Oracle Database SQL Language Reference for more
information about joins

See Also:

■ Oracle Database SQL Language Reference for more information
about SQL operators

■ Oracle Database SQL Language Reference for more information
about SQL functions

Using Operators and Functions in Queries

Selecting Table Data 4-15

De Haan 17000 204000
Kochhar 17000 204000

Using Numeric Functions in Queries
Numeric functions accept numeric input and return numeric values. Each numeric
function returns a single value for each row that is evaluated. The numeric functions
that SQL supports are listed and described in Oracle Database SQL Language Reference.

The query in Example 4–18 uses the numeric function ROUND to display the daily pay of
each employee in department 100, rounded to the nearest cent.

Example 4–18 Rounding Numeric Data

SELECT LAST_NAME,
ROUND (((SALARY * 12)/365), 2) "Daily Pay"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

LAST_NAME Daily Pay
------------------------- ----------
Chen 269.59
Faviet 295.89
Greenberg 394.52
Popp 226.85
Sciarra 253.15
Urman 256.44

6 rows selected.

The query in Example 4–19 uses the numeric function TRUNC to display the daily pay of
each employee in department 100, truncated to the nearest dollar.

Example 4–19 Truncating Numeric Data

SELECT LAST_NAME,
TRUNC ((SALARY * 12)/365) "Daily Pay"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

LAST_NAME Daily Pay
------------------------- ----------
Chen 269
Faviet 295
Greenberg 394
Popp 226
Sciarra 253
Urman 256

6 rows selected.

See Also: Oracle Database SQL Language Reference for more
information about SQL numeric functions

Using Operators and Functions in Queries

4-16 Oracle Database Express Edition 2 Day Developer's Guide

Using the Concatenation Operator in Queries
The concatenation operator (||) combines two strings into one string, by appending
the second string to the first. For example, 'a'||'b'='ab'. You can use this operator to
combine information from two columns or expressions in the same column of the
report, as in the query in Example 4–20.

Example 4–20 Concatenating Character Data

SELECT FIRST_NAME || ' ' || LAST_NAME "Name"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

Name
--
John Chen
Daniel Faviet
Nancy Greenberg
Luis Popp
Ismael Sciarra
Jose Manuel Urman

6 rows selected.

Using Character Functions in Queries
Character functions accept character input. Most return character values, but some
return numeric values. Each character function returns a single value for each row that
is evaluated. The character functions that SQL supports are listed and described in
Oracle Database SQL Language Reference.

The functions UPPER, INITCAP, and LOWER display their character arguments in
uppercase, initial capital, and lowercase, respectively.

The query in Example 4–21 displays LAST_NAME in uppercase, FIRST_NAME with the first
character in uppercase and all others in lowercase, and EMAIL in lowercase.

Example 4–21 Changing the Case of Character Data

SELECT UPPER(LAST_NAME) "Last",
INITCAP(FIRST_NAME) "First",
LOWER(EMAIL) "E-Mail"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY EMAIL;

Result:

Last First E-Mail
------------------------- -------------------- -------------------------
FAVIET Daniel dfaviet
SCIARRA Ismael isciarra
CHEN John jchen
URMAN Jose Manuel jmurman
POPP Luis lpopp
GREENBERG Nancy ngreenbe

6 rows selected.

Using Operators and Functions in Queries

Selecting Table Data 4-17

The functions LTRIM and RTRIM trim characters from the left and right ends of their
character arguments, respectively. The function TRIM trims leading zeros, trailing
zeros, or both.

The query in Example 4–22 finds every clerk in the EMPLOYEES table and trims '_
CLERK' from the JOB_ID, displaying only the characters that identify the type of clerk.

Example 4–22 Trimming Character Data

SELECT LAST_NAME,
RTRIM(JOB_ID, '_CLERK') "Clerk Type"
FROM EMPLOYEES
WHERE JOB_ID LIKE '%_CLERK'
ORDER BY LAST_NAME;

Result:

LAST_NAME Clerk Type
------------------------- ----------
Atkinson ST
Baida PU
Bell SH
Bissot ST
Bull SH
Cabrio SH
Chung SH
Colmenares PU
Davies ST
Dellinger SH
Dilly SH

LAST_NAME Clerk Type
------------------------- ----------
Everett SH
Feeney SH
...
LAST_NAME Clerk Type
------------------------- ----------
Walsh SH

45 rows selected.

The functions LPAD and RPAD pad their character arguments on the left and right,
respectively, with a specified character (the default character is a space).

The query in Example 4–23 displays FIRST_NAME and LAST_NAME in 15-character
columns, blank-padding FIRST_NAME on the left and LAST_NAME on the right.

Example 4–23 Padding Character Data

SELECT LPAD(FIRST_NAME,15) "First",
RPAD(LAST_NAME,15) "Last"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY FIRST_NAME;

Result:

First Last
--------------- ---------------

Using Operators and Functions in Queries

4-18 Oracle Database Express Edition 2 Day Developer's Guide

 Daniel Faviet
 Ismael Sciarra
 John Chen
 Jose Manuel Urman
 Luis Popp
 Nancy Greenberg

6 rows selected.

The SUBSTR function accepts as arguments a string, a character position, and a length,
and returns the substring that starts at the specified position in the string and has the
specified length.

The query in Example 4–24 uses SUBSTR to abbreviate FIRST_NAME to first initial and to
strip the area code from PHONE_NUMBER.

Example 4–24 Extracting Substrings from Character Data

SELECT SUBSTR(FIRST_NAME, 1, 1) || '. ' || LAST_NAME "Name",
SUBSTR(PHONE_NUMBER, 5, 8) "Phone"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

Name Phone
---------------------------- --------
J. Chen 124.4269
D. Faviet 124.4169
N. Greenberg 124.4569
L. Popp 124.4567
I. Sciarra 124.4369
J. Urman 124.4469

6 rows selected.

The REPLACE function replaces one substring with another.

The query in Example 4–25 uses the SUBSTR function in the WHERE clause to select the
employees whose JOB_ID starts with 'SH', and uses the REPLACE function to replace
'SH' with 'SHIPPING' in each such JOB_ID.

Example 4–25 Replacing Substrings in Character Data

COLUMN "Job" FORMAT A15;
SELECT LAST_NAME,
REPLACE(JOB_ID, 'SH', 'SHIPPING') "Job"
FROM EMPLOYEES
WHERE SUBSTR(JOB_ID, 1, 2) = 'SH'
ORDER BY LAST_NAME;

Result:

LAST_NAME Job
------------------------- ---------------
Bell SHIPPING_CLERK
Bull SHIPPING_CLERK
Cabrio SHIPPING_CLERK
Chung SHIPPING_CLERK
Dellinger SHIPPING_CLERK

Using Operators and Functions in Queries

Selecting Table Data 4-19

Dilly SHIPPING_CLERK
Everett SHIPPING_CLERK
Feeney SHIPPING_CLERK
Fleaur SHIPPING_CLERK
Gates SHIPPING_CLERK
Geoni SHIPPING_CLERK

LAST_NAME Job
------------------------- ---------------
Grant SHIPPING_CLERK
Jones SHIPPING_CLERK
McCain SHIPPING_CLERK
OConnell SHIPPING_CLERK
Perkins SHIPPING_CLERK
Sarchand SHIPPING_CLERK
Sullivan SHIPPING_CLERK
Taylor SHIPPING_CLERK
Walsh SHIPPING_CLERK

20 rows selected.

Using Datetime Functions in Queries
Datetime functions operate on date, timestamp, and interval values. Each datetime
function returns a single value for each row that is evaluated. The datetime functions
that SQL supports are listed and described in Oracle Database SQL Language Reference.

To understand Example 4–26, you must understand the JOB_HISTORY table.

When an employee changes jobs, the START_DATE and END_DATE of his or her previous
job are recorded in the JOB_HISTORY table. Employees who have changed jobs more
than once have multiple rows in the JOB_HISTORY table, as the following query and its
results show:

SELECT * FROM JOB_HISTORY
ORDER BY EMPLOYEE_ID;

Result:

EMPLOYEE_ID START_DAT END_DATE JOB_ID DEPARTMENT_ID
----------- --------- --------- ---------- -------------
 101 21-SEP-97 27-OCT-01 AC_ACCOUNT 110
 101 28-OCT-01 15-MAR-05 AC_MGR 110
 102 13-JAN-01 24-JUL-06 IT_PROG 60
 114 24-MAR-06 31-DEC-07 ST_CLERK 50
 122 01-JAN-07 31-DEC-07 ST_CLERK 50
 176 24-MAR-06 31-DEC-06 SA_REP 80
 176 01-JAN-07 31-DEC-07 SA_MAN 80
 200 17-SEP-95 17-JUN-01 AD_ASST 90
 200 01-JUL-02 31-DEC-06 AC_ACCOUNT 90
 201 17-FEB-04 19-DEC-07 MK_REP 20

10 rows selected.

The query in Example 4–26 uses the MONTHS_BETWEEN function to show how many
months each employee held each of his or her previous jobs. For information about the
MONTHS_BETWEEN function, see Oracle Database SQL Language Reference.

See Also: Oracle Database SQL Language Reference for more
information about SQL character functions

Using Operators and Functions in Queries

4-20 Oracle Database Express Edition 2 Day Developer's Guide

Example 4–26 Displaying the Number of Months Between Dates

SELECT e.EMPLOYEE_ID,
e.LAST_NAME,
TRUNC(MONTHS_BETWEEN(j.END_DATE, j.START_DATE)) "Months Worked"
FROM EMPLOYEES e, JOB_HISTORY j
WHERE e.EMPLOYEE_ID = j.EMPLOYEE_ID
ORDER BY "Months Worked";

Result:

EMPLOYEE_ID LAST_NAME Months Worked
----------- ------------------------- -------------
 176 Taylor 9
 122 Kaufling 11
 176 Taylor 11
 114 Raphaely 21
 101 Kochhar 40
 201 Hartstein 46
 101 Kochhar 49
 200 Whalen 53
 102 De Haan 66
 200 Whalen 69

10 rows selected.

The query in Example 4–27 uses the EXTRACT and SYSDATE functions to show how
many years each employee in department 100 has been employed. The SYSDATE
function returns the current date of the system clock. For more information about the
SYSDATE function, see Oracle Database SQL Language Reference. For information about
the EXTRACT function, see Oracle Database SQL Language Reference.

Example 4–27 Displaying the Number of Years Between Dates

SELECT LAST_NAME,
(EXTRACT(YEAR FROM SYSDATE) - EXTRACT(YEAR FROM HIRE_DATE)) "Years Employed"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY "Years Employed";

Result:

LAST_NAME Years Employed
------------------------- --------------
Popp 4
Urman 5
Chen 6
Sciarra 6
Greenberg 9
Faviet 9

6 rows selected.

Suppose that an employee receives his or her first check on the last day of the month
in which he or she was hired. The query in Example 4–28 uses the LAST_DAY function
to show the first pay day for each employee in department 100. For information about
the LAST_DAY function, see Oracle Database SQL Language Reference.

Example 4–28 Displaying the Last Day of a Selected Month

SELECT LAST_NAME,

Using Operators and Functions in Queries

Selecting Table Data 4-21

HIRE_DATE "Hired",
LAST_DAY(HIRE_DATE) "Paid"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY HIRE_DATE;

Result:

LAST_NAME Hired Paid
------------------------- --------- ---------
Faviet 16-AUG-02 31-AUG-02
Greenberg 17-AUG-02 31-AUG-02
Chen 28-SEP-05 30-SEP-05
Sciarra 30-SEP-05 30-SEP-05
Urman 07-MAR-06 31-MAR-06
Popp 07-DEC-07 31-DEC-07

6 rows selected.

Suppose that an employee receives his or her first evaluation six months after being
hired. The query in Example 4–29 uses the ADD_MONTHS function to show the first
evaluation day for each employee in department 100. For information about the ADD_
MONTHS function, see Oracle Database SQL Language Reference.

Example 4–29 Displaying a Date Six Months from a Selected Date

SELECT LAST_NAME,
HIRE_DATE "Hired",
ADD_MONTHS(HIRE_DATE, 6) "Evaluated"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY HIRE_DATE;

Result:

LAST_NAME Hired Evaluated
------------------------- --------- ---------
Faviet 16-AUG-02 16-FEB-03
Greenberg 17-AUG-02 17-FEB-03
Chen 28-SEP-05 28-MAR-06
Sciarra 30-SEP-05 31-MAR-06
Urman 07-MAR-06 07-SEP-06
Popp 07-DEC-07 07-JUN-08

6 rows selected.

The query in Example 4–30 uses the SYSTIMESTAMP function to display the current
system time and date. SYSTIMESTAMP is similar to SYSDATE, but it returns more
information. For information about the SYSTIMESTAMP function, see Oracle Database
SQL Language Reference.

The table in the FROM clause of the query, DUAL, is a one-row table that Oracle Database
XE creates automatically along with the data dictionary. Select from DUAL when you
want to compute a constant expression with the SELECT statement. Because DUAL has
only one row, the constant is returned only once. For more information about selecting
from DUAL, see Oracle Database SQL Language Reference.

Example 4–30 Displaying System Date and Time

SELECT EXTRACT(HOUR FROM SYSTIMESTAMP) || ':' ||
EXTRACT(MINUTE FROM SYSTIMESTAMP) || ':' ||

Using Operators and Functions in Queries

4-22 Oracle Database Express Edition 2 Day Developer's Guide

ROUND(EXTRACT(SECOND FROM SYSTIMESTAMP), 0) || ', ' ||
EXTRACT(MONTH FROM SYSTIMESTAMP) || '/' ||
EXTRACT(DAY FROM SYSTIMESTAMP) || '/' ||
EXTRACT(YEAR FROM SYSTIMESTAMP) "System Time and Date"
FROM DUAL;

Results depend on current SYSTIMESTAMP value, but have this format:

System Time and Date

18:47:33, 6/19/2008

Using Conversion Functions in Queries
Conversion functions convert one data type to another. The conversion functions that
SQL supports are listed and described in Oracle Database SQL Language Reference.

The query in Example 4–31 uses the TO_CHAR function to convert HIRE_DATE values
(which are of type DATE) to character values that have the format FMMonth DD YYYY. FM
removes leading and trailing blanks from the month name. FMMonth DD YYYY is an
example of a datetime format model.

Example 4–31 Converting Dates to Characters Using a Format Template

SELECT LAST_NAME,
HIRE_DATE,
TO_CHAR(HIRE_DATE, 'FMMonth DD YYYY') "Date Started"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

LAST_NAME HIRE_DATE Date Started
------------------------- --------- -----------------
Chen 28-SEP-05 September 28 2005
Faviet 16-AUG-02 August 16 2002
Greenberg 17-AUG-02 August 17 2002
Popp 07-DEC-07 December 7 2007
Sciarra 30-SEP-05 September 30 2005
Urman 07-MAR-06 March 7 2006

6 rows selected.

The query in Example 4–32 uses the TO_CHAR function to convert HIRE_DATE values to
character values that have the two standard formats DS (Date Short) and DL (Date
Long).

Example 4–32 Converting Dates to Characters Using Standard Formats

SELECT LAST_NAME,
TO_CHAR(HIRE_DATE, 'DS') "Short Date",
TO_CHAR(HIRE_DATE, 'DL') "Long Date"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY LAST_NAME;

Result:

See Also: Oracle Database SQL Language Reference for more
information about SQL datetime functions

Using Operators and Functions in Queries

Selecting Table Data 4-23

LAST_NAME Short Date Long Date
------------------------- ---------- -----------------------------
Chen 9/28/2005 Sunday, September 28, 2005
Faviet 8/16/2002 Tuesday, August 16, 2002
Greenberg 8/17/2002 Wednesday, August 17, 2002
Popp 12/7/2007 Tuesday, December 07, 2007
Sciarra 9/30/2005 Tuesday, September 30, 2005
Urman 3/7/2006 Saturday, March 07, 2006

6 rows selected.

The query in Example 4–33 uses the TO_CHAR function to convert SALARY values (which
are of type NUMBER) to character values that have the format $99,999.99.

Example 4–33 Converting Numbers to Characters Using a Format Template

SELECT LAST_NAME,
TO_CHAR(SALARY, '$99,999.99') "Salary"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY SALARY;

Result:

LAST_NAME Salary
------------------------- -----------
Popp $6,900.00
Sciarra $7,700.00
Urman $7,800.00
Chen $8,200.00
Faviet $9,000.00
Greenberg $12,000.00

6 rows selected.

The query in Example 4–34 uses the TO_NUMBER function to convert POSTAL_CODE
values (which are of type VARCHAR2) to values of type NUMBER, which it uses in
calculations.

Example 4–34 Converting Characters to Numbers

SELECT CITY,
POSTAL_CODE "Old Code",
TO_NUMBER(POSTAL_CODE) + 1 "New Code"
FROM LOCATIONS
WHERE COUNTRY_ID = 'US'
ORDER BY POSTAL_CODE;

Result:

CITY Old Code New Code
------------------------------ ------------ ----------
Southlake 26192 26193
South Brunswick 50090 50091
Seattle 98199 98200
South San Francisco 99236 99237

4 rows selected.

The query in Example 4–35 uses the TO_DATE function to convert a string of characters
whose format is Month dd, YYYY, HH:MI A.M. to a DATE value.

Using Operators and Functions in Queries

4-24 Oracle Database Express Edition 2 Day Developer's Guide

Example 4–35 Converting a Character String to a Date

SELECT TO_DATE('January 5, 2007, 8:43 A.M.',
'Month dd, YYYY, HH:MI A.M.') "Date"
FROM DUAL;

Result:

Date

05-JAN-07

The query in Example 4–36 uses the TO_TIMESTAMP function to convert a string of
characters whose format is DD-Mon-RR HH24:MI:SS.FF to a TIMESTAMP value.

Example 4–36 Converting a Character String to a Time Stamp

SELECT TO_TIMESTAMP('May 5, 2007, 8:43 A.M.',
'Month dd, YYYY, HH:MI A.M.') "Timestamp"
FROM DUAL;

Result:

Timestamp
--
05-MAY-07 08.43.00.000000000 AM

Using Aggregate Functions in Queries
An aggregate function returns a single result row, based on a group of rows. The
group of rows can be an entire table or view. The aggregate functions that SQL
supports are listed and described in Oracle Database SQL Language Reference.

Aggregate functions are especially powerful when used with the GROUP BY clause,
which groups query results by one or more columns, with a result for each group.

The query in Example 4–37 uses the COUNT function and the GROUP BY clause to show
how many people report to each manager. The wildcard character, *, represents an
entire record.

Example 4–37 Counting the Number of Rows in Each Group

SELECT MANAGER_ID "Manager",
COUNT(*) "Number of Reports"
FROM EMPLOYEES

See Also:

■ Oracle Database SQL Language Reference for more information
about SQL conversion functions

■ Oracle Database SQL Language Reference for more information
about the TO_CHAR function

■ Oracle Database SQL Language Reference for more information
about the TO_NUMBER function

■ Oracle Database SQL Language Reference for more information
about the TO_DATE function

■ Oracle Database SQL Language Reference for more information
about the TO_TIMESTAMP function

■ "About the NLS_DATE_FORMAT Parameter" on page 9-14

Using Operators and Functions in Queries

Selecting Table Data 4-25

GROUP BY MANAGER_ID;

Result:

 Manager Number of Reports
---------- -----------------
 100 14
 1
 123 8
 120 8
 121 8
 147 6
 205 1
 108 5
 148 6
 149 6
 201 1

 Manager Number of Reports
---------- -----------------
 102 1
 101 5
 114 5
 124 8
 145 6
 146 6
 103 4
 122 8

19 rows selected.

Example 4–37 shows that one employee does not report to a manager. The following
query selects the first name, last name, and job title of that employee:

COLUMN FIRST_NAME FORMAT A10;
COLUMN LAST_NAME FORMAT A10;
COLUMN JOB_TITLE FORMAT A10;

SELECT e.FIRST_NAME,
e.LAST_NAME,
j.JOB_TITLE
FROM EMPLOYEES e, JOBS j
WHERE e.JOB_ID = j.JOB_ID
AND MANAGER_ID IS NULL;

Result:

FIRST_NAME LAST_NAME JOB_TITLE
---------- ---------- ----------
Steven King President

When used with the DISTINCT option, the COUNT function shows how many distinct
values are in a data set.

The two queries in Example 4–38 show the total number of departments and the
number of departments that have employees.

Example 4–38 Counting the Number of Distinct Values in a Set

SELECT COUNT(*) FROM DEPARTMENTS;

Using Operators and Functions in Queries

4-26 Oracle Database Express Edition 2 Day Developer's Guide

Result:

 COUNT(*)

 27

SELECT COUNT(DISTINCT DEPARTMENT_ID) "Number of Departments"
FROM EMPLOYEES;

Result:

Number of Departments

 11

The query in Example 4–39 uses several aggregate functions to show statistics for the
salaries of each JOB_ID.

Example 4–39 Using Aggregate Functions for Statistical Information

SELECT JOB_ID,
COUNT(*) "#",
MIN(SALARY) "Minimum",
ROUND(AVG(SALARY), 0) "Average",
MEDIAN(SALARY) "Median",
MAX(SALARY) "Maximum",
ROUND(STDDEV(SALARY)) "Std Dev"
FROM EMPLOYEES
GROUP BY JOB_ID
ORDER BY JOB_ID;

Result:

JOB_ID # Minimum Average Median Maximum Std Dev
---------- ---------- ---------- ---------- ---------- ---------- ----------
AC_ACCOUNT 1 8300 8300 8300 8300 0
AC_MGR 1 12000 12000 12000 12000 0
AD_ASST 1 4400 4400 4400 4400 0
AD_PRES 1 24000 24000 24000 24000 0
AD_VP 2 17000 17000 17000 17000 0
FI_ACCOUNT 5 6900 7920 7800 9000 766
FI_MGR 1 12000 12000 12000 12000 0
HR_REP 1 6500 6500 6500 6500 0
IT_PROG 5 4200 5760 4800 9000 1926
MK_MAN 1 13000 13000 13000 13000 0
MK_REP 1 6000 6000 6000 6000 0

JOB_ID # Minimum Average Median Maximum Std Dev
---------- ---------- ---------- ---------- ---------- ---------- ----------
PR_REP 1 10000 10000 10000 10000 0
PU_CLERK 5 2500 2780 2800 3100 239
PU_MAN 1 11000 11000 11000 11000 0
SA_MAN 5 10500 12200 12000 14000 1525
SA_REP 30 6100 8350 8200 11500 1524
SH_CLERK 20 2500 3215 3100 4200 548
ST_CLERK 20 2100 2785 2700 3600 453
ST_MAN 5 5800 7280 7900 8200 1066

19 rows selected.

Using Operators and Functions in Queries

Selecting Table Data 4-27

To have the query return only rows where aggregate values meet specified conditions,
use the HAVING clause.

The query in Example 4–40 shows how much each department spends annually on
salaries, but only for departments for which that amount exceeds $1,000,000.

Example 4–40 Limiting Aggregate Functions to Rows that Satisfy a Condition

SELECT DEPARTMENT_ID "Department",
SUM(SALARY*12) "All Salaries"
FROM EMPLOYEES
HAVING SUM(SALARY * 12) >= 1000000
GROUP BY DEPARTMENT_ID;

Result:

Department All Salaries
---------- ------------
 50 1876800
 80 3654000

The RANK function returns the relative ordered rank of a number, and the PERCENT_
RANK function returns the percentile position of a number.

The query in Example 4–41 shows that a salary of $3,000 is the 20th highest, and is in
the 42nd percentile, among all clerks.

Example 4–41 Showing the Rank and Percentile of a Number Within a Group

SELECT RANK(3000) WITHIN GROUP
 (ORDER BY SALARY DESC) "Rank",
ROUND(100 * (PERCENT_RANK(3000) WITHIN GROUP
 (ORDER BY SALARY DESC)), 0) "Percentile"
FROM EMPLOYEES
WHERE JOB_ID LIKE '%CLERK';

Result:

 Rank Percentile
---------- ----------
 20 42

The DENSE_RANK function is like the RANK function, except that the identical values have
the same rank, and there are no gaps in the ranking. Using the DENSE_RANK function,
$3,000 is the 12th highest salary for clerks, as Example 4–42 shows.

Example 4–42 Showing the Dense Rank of a Number Within a Group

SELECT DENSE_RANK(3000) WITHIN GROUP (ORDER BY salary DESC) "Rank"
FROM EMPLOYEES
WHERE JOB_ID LIKE '%CLERK';

Result:

 Rank

 12

See Also: Oracle Database SQL Language Reference for more
informaton about SQL aggregate functions

Using Operators and Functions in Queries

4-28 Oracle Database Express Edition 2 Day Developer's Guide

Using NULL-Related Functions in Queries
The NULL-related functions facilitate the handling of NULL values. The NULL-related
functions that SQL supports are listed and described in Oracle Database SQL Language
Reference.

The query in Example 4–43 returns the last name and commission of the employees
whose last names begin with 'B'. If an employee receives no commission (that is, if
COMMISSION_PCT is NULL), the NVL function substitutes "Not Applicable" for NULL.

Example 4–43 Substituting a String for a NULL Value

SELECT LAST_NAME,
NVL(TO_CHAR(COMMISSION_PCT), 'Not Applicable') "COMMISSION"
FROM EMPLOYEES
WHERE LAST_NAME LIKE 'B%'
ORDER BY LAST_NAME;

Result:

LAST_NAME COMMISSION
------------------------- --
Baer Not Applicable
Baida Not Applicable
Banda .1
Bates .15
Bell Not Applicable
Bernstein .25
Bissot Not Applicable
Bloom .2
Bull Not Applicable

9 rows selected.

The query in Example 4–44 returns the last name, salary, and income of the employees
whose last names begin with 'B', using the NVL2 function: If COMMISSION_PCT is not
NULL, the income is the salary plus the commission; if COMMISSION_PCT is NULL, income
is only the salary.

Example 4–44 Specifying Different Expressions for NULL and Not NULL Values

SELECT LAST_NAME, SALARY,
NVL2(COMMISSION_PCT, SALARY + (SALARY * COMMISSION_PCT), SALARY) INCOME
FROM EMPLOYEES WHERE LAST_NAME LIKE 'B%'
ORDER BY LAST_NAME;

Result:

LAST_NAME SALARY INCOME
------------------------- ---------- ----------
Baer 10000 10000
Baida 2900 2900
Banda 6200 6882
Bates 7300 8468
Bell 4000 4000
Bernstein 9500 11970
Bissot 3300 3300
Bloom 10000 12100
Bull 4100 4100

9 rows selected.

Using Operators and Functions in Queries

Selecting Table Data 4-29

Using CASE Expressions in Queries
A CASE expression lets you use IF ... THEN ... ELSE logic in SQL statements without
invoking procedures.

The query in Example 4–45 uses a CASE expression to show proposed salary increases,
based on length of service.

Example 4–45 Using a CASE Expression in a Query

SELECT LAST_NAME "Name",
HIRE_DATE "Started",
SALARY "Salary",
CASE
 WHEN HIRE_DATE < TO_DATE('01-Jan-90') THEN TRUNC(SALARY*1.15, 0)
 WHEN HIRE_DATE < TO_DATE('01-Jan-95') THEN TRUNC(SALARY*1.10, 0)
 WHEN HIRE_DATE < TO_DATE('01-Jan-00') THEN TRUNC(SALARY*1.05, 0)
 ELSE SALARY
END "Proposed Salary"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY HIRE_DATE;

Result:

Name Started Salary Proposed Salary
------------------------- --------- ---------- ---------------
Faviet 16-AUG-02 9000 9000
Greenberg 17-AUG-02 12008 12008
Chen 28-SEP-05 8200 8200
Sciarra 30-SEP-05 7700 7700
Urman 07-MAR-06 7800 7800
Popp 07-DEC-07 6900 6900

6 rows selected.

Using the DECODE Function in Queries
The DECODE function compares a value or expression to search values, and returns a
result when it finds a match. If a match is not found, then DECODE returns the default
value, or NULL (if a default value is not specified).

The query in Example 4–46 uses the DECODE function to show proposed salary
increases for three different jobs.

See Also:

■ Oracle Database SQL Language Reference for more information
about the NVL function

■ Oracle Database SQL Language Reference for more information
about the NVL2 function

See Also:

■ "Using the CASE Statement" on page 7-24

■ Oracle Database SQL Language Reference for more information
about CASE expressions

Using Operators and Functions in Queries

4-30 Oracle Database Express Edition 2 Day Developer's Guide

Example 4–46 Using the DECODE Function in a Query

SELECT LAST_NAME, JOB_ID, SALARY,
DECODE(JOB_ID,
 'PU_CLERK', SALARY * 1.10,
 'SH_CLERK', SALARY * 1.15,
 'ST_CLERK', SALARY * 1.20,
 SALARY) "Proposed Salary"
FROM EMPLOYEES
WHERE JOB_ID LIKE '%_CLERK'
AND LAST_NAME < 'E'
ORDER BY LAST_NAME;

Result:

LAST_NAME JOB_ID SALARY Proposed Salary
------------------------- ---------- ---------- ---------------
Atkinson ST_CLERK 2800 3360
Baida PU_CLERK 2900 3190
Bell SH_CLERK 4000 4600
Bissot ST_CLERK 3300 3960
Bull SH_CLERK 4100 4715
Cabrio SH_CLERK 3000 3450
Chung SH_CLERK 3800 4370
Colmenares PU_CLERK 2500 2750
Davies ST_CLERK 3100 3720
Dellinger SH_CLERK 3400 3910
Dilly SH_CLERK 3600 4140

11 rows selected.

See Also: Oracle Database SQL Language Reference for information
about the DECODE function

5

About DML Statements and Transactions 5-1

5About DML Statements and Transactions

This chapter contains the following topics:

■ About Data Manipulation Language (DML) Statements

■ About Transaction Control Statements

■ Committing Transactions

■ Rolling Back Transactions

■ Setting Savepoints in Transactions

About Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements access and manipulate data in
existing tables.

In the SQL*Plus environment, you can enter a DML statement after the SQL> prompt.

In the SQL Developer environment, you can enter a DML statement in the
SQL Worksheet. Alternatively, you can use the SQL Developer navigation frame and
tools to access and manipulate data.

To see the effect of a DML statement in SQL Developer, you might have to select the
schema object type of the changed object in the Connections pane and then click the
Refresh icon.

The effect of a DML statement is not permanent until you commit the transaction that
includes it. A transaction is a sequence of SQL statements that Oracle Database
Express Edition (Oracle Database XE) treats as a unit (it can be a single DML
statement). Until a transaction is committed, it can be rolled back (undone). For more
information about transactions, see "About Transaction Control Statements" on
page 5-5.

Topics:

■ About the INSERT Statement

■ About the UPDATE Statement

■ About the DELETE Statement

About the INSERT Statement
The INSERT statement inserts rows into an existing table.

See Also: Oracle Database SQL Language Reference for more
information about DML statements

About Data Manipulation Language (DML) Statements

5-2 Oracle Database Express Edition 2 Day Developer's Guide

The simplest recommended form of the INSERT statement has this syntax:

INSERT INTO table_name (list_of_columns)
VALUES (list_of_values);

Every column in list_of_columns must have a valid value in the corresponding
position in list_of_values. Therefore, before you insert a row into a table, you must
know what columns the table has, and what their valid values are. To get this
information using SQL Developer, see "Tutorial: Viewing EMPLOYEES Table
Properties and Data" on page 3-2. To get this information using SQL*Plus, use the
DESCRIBE statement. For example:

DESCRIBE EMPLOYEES;

Result:

 Name Null? Type
 --- -------- ------------

 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

The INSERT statement in Example 5–1 inserts a row into the EMPLOYEES table for an
employee for which all column values are known.

Example 5–1 Using the INSERT Statement When All Information Is Available

INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID,
 SALARY,
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
VALUES (
 10, -- EMPLOYEE_ID
 'George', -- FIRST_NAME
 'Gordon', -- LAST_NAME
 'GGORDON', -- EMAIL
 '650.506.2222', -- PHONE_NUMBER
 '01-JAN-07', -- HIRE_DATE
 'SA_REP', -- JOB_ID
 9000, -- SALARY
 .1, -- COMMISSION_PCT
 148, -- MANAGER_ID
 80 -- DEPARTMENT_ID

About Data Manipulation Language (DML) Statements

About DML Statements and Transactions 5-3

);

Result:

1 row created.

You do not need to know all column values to insert a row into a table, but you must
know the values of all NOT NULL columns. If you do not know the value of a column
that can be NULL, you can omit that column from list_of_columns. Its value defaults
to NULL.

The INSERT statement in Example 5–2 inserts a row into the EMPLOYEES table for an
employee for which all column values are known except SALARY. For now, SALARY can
have the value NULL. When you know the salary, you can change it with the UPDATE
statement (see Example 5–4).

Example 5–2 Using the INSERT Statement When Not All Information Is Available

INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID, -- Omit SALARY; its value defaults to NULL.
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
VALUES (
 20, -- EMPLOYEE_ID
 'John', -- FIRST_NAME
 'Keats', -- LAST_NAME
 'JKEATS', -- EMAIL
 '650.506.3333', -- PHONE_NUMBER
 '01-JAN-07', -- HIRE_DATE
 'SA_REP', -- JOB_ID
 .1, -- COMMISSION_PCT
 148, -- MANAGER_ID
 80 -- DEPARTMENT_ID
);

Result:

1 row created.

The INSERT statement in Example 5–3 tries to insert a row into the EMPLOYEES table for
an employee for which LAST_NAME is not known.

Example 5–3 Using the INSERT Statement Incorrectly

INSERT INTO EMPLOYEES (
 EMPLOYEE_ID,
 FIRST_NAME, -- Omit LAST_NAME (error)
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID,
 COMMISSION_PCT,
 MANAGER_ID,

About Data Manipulation Language (DML) Statements

5-4 Oracle Database Express Edition 2 Day Developer's Guide

 DEPARTMENT_ID
)
VALUES (
 20, -- EMPLOYEE_ID
 'John', -- FIRST_NAME
 'JOHN', -- EMAIL
 '650.506.3333', -- PHONE_NUMBER
 '01-JAN-07', -- HIRE_DATE
 'SA_REP', -- JOB_ID
 .1, -- COMMISSION_PCT
 148, -- MANAGER_ID
 80 -- DEPARTMENT_ID
);

Result:

ORA-01400: cannot insert NULL into ("HR"."EMPLOYEES"."LAST_NAME")

About the UPDATE Statement
The UPDATE statement updates (changes the values of) a set of existing table rows.

A simple form of the UPDATE statement has this syntax:

UPDATE table_name
SET column_name = value [, column_name = value]...
[WHERE condition];

Each value must be valid for its column_name. If you include the WHERE clause, the
statement updates column values only in rows that satisfy condition.

The UPDATE statement in Example 5–4 updates the value of the SALARY column in the
row that was inserted into the EMPLOYEES table in Example 5–2, before the salary of the
employee was known.

Example 5–4 Using the UPDATE Statement to Add Data

UPDATE EMPLOYEES
SET SALARY = 8500
WHERE LAST_NAME = 'Keats';

Result:

1 row updated.

The UPDATE statement in Example 5–5 updates the commission percentage for every
employee in department 80.

Example 5–5 Using the UPDATE Statement to Update Multiple Rows

UPDATE EMPLOYEES
SET COMMISSION_PCT = COMMISSION_PCT + 0.05

See Also:

■ Oracle Database SQL Language Reference for information about the
INSERT statement

■ Oracle Database SQL Language Reference for information about data
types

■ "Tutorial: Adding Rows to Tables with the Insert Row Tool" on
page 6-11

About Transaction Control Statements

About DML Statements and Transactions 5-5

WHERE DEPARTMENT_ID = 80;

Result:

36 rows updated.

About the DELETE Statement
The DELETE statement deletes rows from a table.

A simple form of the DELETE statement has this syntax:

DELETE FROM table_name
[WHERE condition];

If you include the WHERE clause, the statement deletes only rows that satisfy condition.
If you omit the WHERE clause, the statement deletes all rows from the table, but the
empty table still exists. To delete a table, use the DROP TABLE statement.

The DELETE statement in Example 5–6 deletes the rows inserted in Example 5–1 and
Example 5–2.

Example 5–6 Using the DELETE Statement

DELETE FROM EMPLOYEES
WHERE HIRE_DATE = '01-JAN-07';

Result:

2 rows deleted.

About Transaction Control Statements
A transaction is a sequence of one or more SQL statements that Oracle Database XE
treats as a unit: either all of the statements are performed, or none of them are.

You need transactions to model business processes that require that several operations
be performed as a unit. For example, when a manager leaves the company, a row must
be inserted into the JOB_HISTORY table to show when the manager left, and for every
employee who reports to that manager, the value of MANAGER_ID must be updated in
the EMPLOYEES table. To model this process in an application, you must group the
INSERT and UPDATE statements into a single transaction.

See Also:

■ Oracle Database SQL Language Reference for information about the
UPDATE statement

■ Oracle Database SQL Language Reference for information about data
types

■ "Tutorial: Changing Data in Tables in the Data Pane" on page 6-12

See Also:

■ Oracle Database SQL Language Reference for information about the
DELETE statement

■ Oracle Database SQL Language Reference for information about the
DROP TABLE statement

■ "Tutorial: Deleting Rows from Tables with the Delete Selected
Row(s) Tool" on page 6-13

Committing Transactions

5-6 Oracle Database Express Edition 2 Day Developer's Guide

The basic transaction control statements are:

■ SAVEPOINT, which marks a savepoint in a transaction—a point to which you can
later roll back. Savepoints are optional, and a transaction can have multiple
savepoints.

■ COMMIT, which ends the current transaction, makes its changes permanent, erases
its savepoints, and releases its locks.

■ ROLLBACK, which rolls back (undoes) either the entire current transaction or only
the changes made after the specified savepoint.

In the SQL*Plus environment, you can enter a transaction control statement after the
SQL> prompt.

In the SQL Developer environment, you can enter a transaction control statement in
the SQL Worksheet. SQL Developer also has Commit Changes and Rollback Changes
icons, which are explained in "Committing Transactions" on page 5-6 and "Rolling
Back Transactions" on page 5-7.

Committing Transactions
Committing a transaction makes its changes permanent, erases its savepoints, and
releases its locks.

To explicitly commit a transaction, use either the COMMIT statement or (in the
SQL Developer environment) the Commit Changes icon.

Before you commit a transaction:

■ Your changes are visible to you, but not to other users of the database instance.

■ Your changes are not final—you can undo them with a ROLLBACK statement.

After you commit a transaction:

■ Your changes are visible to other users, and to their statements that run after you
commit your transaction.

Caution: If you do not explicitly commit a transaction, and the
program terminates abnormally, then the database automatically rolls
back the last uncommitted transaction.

Oracle recommends that you explicitly end transactions in application
programs, by either committing them or rolling them back.

See Also:

■ Oracle Database Concepts for more information about transaction
management

■ Oracle Database SQL Language Reference for more information
about transaction control statements

Note: Oracle Database XE issues an implicit COMMIT statement before
and after any data definition language (DDL) statement. For
information about DDL statements, see "About Data Definition
Language (DDL) Statements" on page 6-1.

Rolling Back Transactions

About DML Statements and Transactions 5-7

■ Your changes are final—you cannot undo them with a ROLLBACK statement.

Example 5–7 adds one row to the REGIONS table (a very simple transaction), checks the
result, and then commits the transaction.

Example 5–7 Committing a Transaction

Before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa

Transaction (add row to table):

INSERT INTO regions (region_id, region_name) VALUES (5, 'Africa');

Result:

1 row created.

Check that row was added:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

Commit transaction:

COMMIT;

Result:

Commit complete.

Rolling Back Transactions
Rolling back a transaction undoes its changes. You can roll back the entire current
transaction, or you can roll it back only to a specified savepoint.

To roll back the current transaction only to a specified savepoint, you must use the
ROLLBACK statement with the TO SAVEPOINT clause.

See Also: Oracle Database SQL Language Reference for information
about the COMMIT statement

Rolling Back Transactions

5-8 Oracle Database Express Edition 2 Day Developer's Guide

To roll back the entire current transaction, use either the ROLLBACK statement without
the TO SAVEPOINT clause, or (in the SQL Developer environment) the Rollback Changes
icon.

Rolling back the entire current transaction:

■ Ends the transaction

■ Reverses all of its changes

■ Erases all of its savepoints

■ Releases any transaction locks

Rolling back the current transaction only to the specified savepoint:

■ Does not end the transaction

■ Reverses only the changes made after the specified savepoint

■ Erases only the savepoints set after the specified savepoint (excluding the
specified savepoint itself)

■ Releases all table and row locks acquired after the specified savepoint

Other transactions that have requested access to rows locked after the specified
savepoint must continue to wait until the transaction is either committed or rolled
back. Other transactions that have not requested the rows can request and access
the rows immediately.

To see the effect of a rollback in SQL Developer, you might have to click the Refresh
icon.

As a result of Example 5–7, the REGIONS table has a region called 'Middle East and
Africa' and a region called 'Africa'. Example 5–8 corrects this problem (a very simple
transaction) and checks the change, but then rolls back the transaction and checks the
rollback.

Example 5–8 Rolling Back an Entire Transaction

Before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

Transaction (change table):

UPDATE REGIONS
SET REGION_NAME = 'Middle East'
WHERE REGION_NAME = 'Middle East and Africa';

Result:

1 row updated.

Check change:

Setting Savepoints in Transactions

About DML Statements and Transactions 5-9

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East
 5 Africa

Roll back transaction:

ROLLBACK;

Result:

Rollback complete.

Check rollback:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa
 5 Africa

Setting Savepoints in Transactions
The SAVEPOINT statement marks a savepoint in a transaction—a point to which you
can later roll back. Savepoints are optional, and a transaction can have multiple
savepoints.

Example 5–9 does a transaction that includes several DML statements and several
savepoints, and then rolls back the transaction to one savepoint, undoing only the
changes made after that savepoint.

Example 5–9 Rolling Back a Transaction to a Savepoint

Check REGIONS table before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas

See Also: Oracle Database SQL Language Reference for information
about the ROLLBACK statement

Setting Savepoints in Transactions

5-10 Oracle Database Express Edition 2 Day Developer's Guide

 3 Asia
 4 Middle East and Africa
 5 Africa

5 rows selected.

Check countries in region 4 before transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 4
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Egypt EG 4
Israel IL 4
Kuwait KW 4
Nigeria NG 4
Zambia ZM 4
Zimbabwe ZW 4

6 rows selected.

Check countries in region 5 before transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 5
ORDER BY COUNTRY_NAME;

Result:

no rows selected

Transaction, with several savepoints:

UPDATE REGIONS
SET REGION_NAME = 'Middle East'
WHERE REGION_NAME = 'Middle East and Africa';

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'ZM';
SAVEPOINT zambia;

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'NG';
SAVEPOINT nigeria;

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'ZW';
SAVEPOINT zimbabwe;

UPDATE COUNTRIES
 SET REGION_ID = 5
 WHERE COUNTRY_ID = 'EG';
SAVEPOINT egypt;

Setting Savepoints in Transactions

About DML Statements and Transactions 5-11

Check REGIONS table after transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East
 5 Africa

5 rows selected.

Check countries in region 4 after transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 4
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Israel IL 4
Kuwait KW 4

2 rows selected.

Check countries in region 5 after transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 5
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Egypt EG 5
Nigeria NG 5
Zambia ZM 5
Zimbabwe ZW 5

4 rows selected.

ROLLBACK TO SAVEPOINT nigeria;

Check REGIONS table after rollback:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

 REGION_ID REGION_NAME
---------- -------------------------

Setting Savepoints in Transactions

5-12 Oracle Database Express Edition 2 Day Developer's Guide

 1 Europe
 2 Americas
 3 Asia
 4 Middle East
 5 Africa

5 rows selected.

Check countries in region 4 after rollback:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 4
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Egypt EG 4
Israel IL 4
Kuwait KW 4
Zimbabwe ZW 4

4 rows selected.

Check countries in region 5 after rollback:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES
WHERE REGION_ID = 5
ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
-- -- ----------
Nigeria NG 5
Zambia ZM 5

2 rows selected.

See Also: Oracle Database SQL Language Reference for information
about the SAVEPOINT statement

6

Creating and Managing Schema Objects 6-1

6Creating and Managing Schema Objects

This chapter contains the following topics:

■ About Data Definition Language (DDL) Statements

■ About Schema Object Names

■ Creating and Managing Tables

■ Creating and Managing Views

■ Creating and Managing Sequences

■ Creating and Managing Synonyms

About Data Definition Language (DDL) Statements
The statements that create, change, and drop schema objects are data definition
language (DDL) statements. Before and after a DDL statement, Oracle Database
Express Edition (Oracle Database XE) issues an implicit COMMIT statement; therefore,
you cannot roll back a DDL statement.

In the SQL*Plus environment, you can enter a DDL statement after the SQL> prompt.

In the SQL Developer environment, you can enter a DDL statement in the
SQL Worksheet. Alternatively, you can use SQL Developer tools to create, change, and
drop objects.

Some DDL statements that create schema objects have an optional OR REPLACE clause,
which allows a statement to replace an existing schema object with another that has
the same name and type. When SQL Developer generates code for one of these
statements, it always includes the OR REPLACE clause.

To see the effect of a DDL statement in SQL Developer, you might have to select the
schema object type of the newly created object in the Connections pane and then click
the Refresh icon.

About Schema Object Names
When creating schema objects, you must observe the schema object naming rules in
Oracle Database SQL Language Reference.

See Also:

■ Oracle Database SQL Language Reference for more information
about DDL statements

■ "Committing Transactions" on page 5-6

Creating and Managing Tables

6-2 Oracle Database Express Edition 2 Day Developer's Guide

Creating and Managing Tables
Tables are the basic units of data storage in Oracle Database XE. Tables hold all
user-accessible data. Each table contains rows that represent individual data records.
Rows are composed of columns that represent the fields of the records.

Topics:

■ About SQL Data Types

■ Creating Tables

■ Ensuring Data Integrity in Tables

■ Tutorial: Adding Rows to Tables with the Insert Row Tool

■ Tutorial: Changing Data in Tables in the Data Pane

■ Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool

■ Managing Indexes

■ Dropping Tables

About SQL Data Types
When you create a table, you must specify the SQL data type for each column. The
data type of a column determines what values the column can contain. For example, a
column of type DATE can contain the value '01-MAY-05', but it cannot contain the
numeric value 2 or the character value 'shoe'. SQL data types fall into two categories:
built-in and user-defined. (PL/SQL has additional data types—see "About PL/SQL
Data Types" on page 7-4.)

Tip: Use the same prefix for names of objects of the same type. For
example, t_ for tables, v_ for views, seq_ for sequences, and syn_ for
synonyms. This practice makes your objects easy to identify, and
groups them in the SQL Developer Connections navigator display,
SQL Developer reports, and queries whose results are ordered by
object name.

Note: To do the tutorials in this document, you must be connected to
Oracle Database XE as the user HR from SQL Developer.

See Also:

■ "Tutorial: Viewing EMPLOYEES Table Properties and Data" on
page 3-2

■ Oracle Database Concepts for general information about tables

Creating and Managing Tables

Creating and Managing Schema Objects 6-3

Creating Tables
To create tables, use either the SQL Developer tool Create Table or the DDL statement
CREATE TABLE. This topic shows how to use both of these ways to create these tables,
which will contain data about employee evaluations:

■ PERFORMANCE_PARTS, which contains the categories of employee performance that
are evaluated and their relative weights

■ EVALUATIONS, which contains employee information, evaluation date, job,
manager, and department

■ SCORES, which contains the scores assigned to each performance category for each
evaluation

These tables are part of the sample application that the tutorials and examples in this
document show how to develop and deploy.

Topics:

■ Tutorial: Creating a Table with the Create Table Tool

■ Creating Tables with the CREATE TABLE Statement

Tutorial: Creating a Table with the Create Table Tool
This tutorial shows how to create the PERFORMANCE_PARTS table using the Create Table
tool.

To create the PERFORMANCE_PARTS table using the Create Table tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Right-click Tables.

A list of choices appears.

3. Click New Table.

The Create Table window opens, with default values for a new table, which has
only one row.

4. For Schema, accept the default value, HR.

5. For Name, enter PERFORMANCE_PARTS.

6. In the default row:

– For Column Name, enter PERFORMANCE_ID.

– For Type, accept the default value, VARCHAR2.

See Also:

■ Oracle Database SQL Language Reference for a summary of built-in
SQL data types

■ Oracle Database Concepts for introductions to each of the built-in
SQL data types

■ Oracle Database SQL Language Reference for more information
about user-defined data types

■ "About PL/SQL Data Types" on page 7-4

Creating and Managing Tables

6-4 Oracle Database Express Edition 2 Day Developer's Guide

– For Size, enter 2.

– For Not Null and Primary Key, accept the default values, deselected.

7. Click Add Column.

8. For Column Name, enter NAME.

9. For Type, accept the default value, VARCHAR2.

10. For Size, enter 80.

11. Click Add Column.

12. For Column Name, enter WEIGHT.

13. For Type, select NUMBER from the menu.

14. Click OK.

The table PERFORMANCE_PARTS is created. To see it, expand Tables in the navigation
frame.

Creating Tables with the CREATE TABLE Statement
This topic shows how to use the CREATE TABLE statement to create the EVALUATIONS and
SCORES tables.

The CREATE TABLE statement in Example 6–1 creates the EVALUATIONS table.

Example 6–1 Creating the EVALUATIONS Table with CREATE TABLE

CREATE TABLE EVALUATIONS (
 EVALUATION_ID NUMBER(8,0),
 EMPLOYEE_ID NUMBER(6,0),
 EVALUATION_DATE DATE,
 JOB_ID VARCHAR2(10),
 MANAGER_ID NUMBER(6,0),
 DEPARTMENT_ID NUMBER(4,0),
 TOTAL_SCORE NUMBER(3,0)
);

Result:

Table created.

The CREATE TABLE statement in Example 6–2 creates the SCORES table.

Example 6–2 Creating the SCORES Table with CREATE TABLE

CREATE TABLE SCORES (
 EVALUATION_ID NUMBER(8,0),
 PERFORMANCE_ID VARCHAR2(2),
 SCORE NUMBER(1,0)
);

Result:

Table created.

In SQL Developer, in the navigation frame, if you expand Tables, you can see the
tables EVALUATIONS and SCORES.

See Also: Oracle Database SQL Developer User's Guide for more
information about using SQL Developer to create tables

Creating and Managing Tables

Creating and Managing Schema Objects 6-5

If you select a table in the navigation frame, and then click the tab SQL in the right
frame, the SQL pane shows the SQL statement that created the table.

Ensuring Data Integrity in Tables
To ensure that the data in your tables satisfies the business rules that your application
models, you can use constraints, application logic, or both.

Constraints restrict the values that columns can have. Trying to change the data in a
way that violates a constraint causes an error and rolls back the change. Trying to add
a constraint to a populated table causes an error if existing data violates the constraint.

Constraints can be enabled and disabled. By default, they are created in the enabled
state.

Topics:

■ About Constraint Types

■ Tutorial: Adding Constraints to Existing Tables

About Constraint Types
The constraint types are:

■ Not Null, which prevents a value from being null

In the EMPLOYEES table, the column LAST_NAME has the NOT NULL constraint, which
enforces the business rule that every employee must have a last name.

■ Unique, which prevents multiple rows from having the same value in the same
column or combination of columns, but allows some values to be null

In the EMPLOYEES table, the column EMAIL has the UNIQUE constraint, which
enforces the business rule that an employee can have no email address, but cannot
have the same email address as another employee.

■ Primary Key, which is a combination of NOT NULL and UNIQUE

In the EMPLOYEES table, the column EMPLOYEE_ID has the PRIMARY KEY constraint,
which enforces the business rule that every employee must have a unique
employee identification number.

■ Foreign Key, which requires values in one table to match values in another table

See Also: Oracle Database SQL Language Reference for information
about the CREATE TABLE statement

Tip: Wherever possible, use constraints instead of application logic.
Oracle Database XE checks that all data obeys constraints much faster
than application logic can.

See Also:

■ Oracle Database Concepts for additional general information about
constraints

■ Oracle Database SQL Language Reference for syntactic information
about constraints

■ "Installing the Sample Application" on page 10-9

Creating and Managing Tables

6-6 Oracle Database Express Edition 2 Day Developer's Guide

In the EMPLOYEES table, the column JOB_ID has a FOREIGN KEY constraint that
references the JOBS table, which enforces the business rule that an employee
cannot have a JOB_ID that is not in the JOBS table.

■ Check, which requires that a value satisfy a specified condition

The EMPLOYEES table does not have CHECK constraints. However, suppose that
EMPLOYEES needs a new column, EMPLOYEE_AGE, and that every employee must be
at least 18. The constraint CHECK (EMPLOYEE_AGE >= 18) enforces the business rule.

■ REF, which further describes the relationship between the column and the object
that it references

For information about REF constraints, see Oracle Database Concepts.

Tutorial: Adding Constraints to Existing Tables
To add constraints to existing tables, use either SQL Developer tools or the DDL
statement ALTER TABLE. This topic shows how to use both of these ways to add
constraints to the tables created in "Creating Tables" on page 6-3.

This tutorial has several procedures. The first procedure (immediately after this
paragraph) uses the Edit Table tool to add a Not Null constraint to the NAMES column
of the PERFORMANCE_PARTS table. The remaining procedures show how to use other
tools to add constraints; however, you could add the same constraints using the Edit
Table tool.

To add a Not Null constraint using the Edit Table tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Tables.

A list of tables appears.

3. Right-click PERFORMANCE_PARTS.

A list of choices appears.

4. Click Edit.

Tip: Use check constraints only when other constraint types cannot
provide the necessary checking.

See Also:

■ Oracle Database Concepts for additional general information about
constraint types

■ Oracle Database SQL Language Reference for syntactic information
about constraints

Note: After any step of the tutorial, you can view the constraints that
a table has:

1. In the navigation frame, select the name of the table.

2. In the right frame, click the tab Constraints.

For more information about viewing table properties and data, see
"Tutorial: Viewing EMPLOYEES Table Properties and Data" on
page 3-2.

Creating and Managing Tables

Creating and Managing Schema Objects 6-7

The Edit Table window opens. By default, Columns is selected, the columns of the
PERFORMANCE_PARTS table are listed, the column PERFORMANCE_ID is selected, and
its properties are listed.

5. Click the column NAME.

The properties of the column NAME appear. The property "Cannot be NULL" is
deselected.

6. Select Cannot be NULL.

7. Click OK.

The Not Null constraint is added to the NAME column of the PERFORMANCE_PARTS
table.

The following procedure uses the ALTER TABLE statement to add a Not Null constraint
to the WEIGHT column of the PERFORMANCE_PARTS table.

To add a Not Null constraint using the ALTER TABLE statement:
1. If a SQL Worksheet pane with the tab hr_conn is there, select it. Otherwise, click

the icon SQL Worksheet, as in "Running Queries in SQL Developer" on page 4-2.

2. In the Worksheet pane, type this statement:

ALTER TABLE PERFORMANCE_PARTS
MODIFY WEIGHT NOT NULL;

3. Click the icon Run Statement.

The statement runs, adding the Not Null constraint to the WEIGHT column of the
PERFORMANCE_PARTS table.

The following procedure uses the Add Unique tool to add a Unique constraint to the
SCORES table.

To add a Unique constraint using the Add Unique tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Tables.

A list of tables appears.

3. Right-click SCORES.

A list of choices appears.

4. Click Constraint.

A list of choices appears.

5. Click Add Unique.

The Add Unique window opens.

6. For Constraint Name, enter SCORES_EVAL_PERF_UNIQUE.

7. For Column 1, select EVALUATION_ID from the menu.

8. For Column 2, select PERFORMANCE_ID from the menu.

9. Click Apply.

The Confirmation window opens.

Creating and Managing Tables

6-8 Oracle Database Express Edition 2 Day Developer's Guide

10. Click OK.

A unique constraint named SCORES_EVAL_PERF_UNIQUE is added to the SCORES
table.

The following procedure uses the Add Primary Key tool to add a Primary Key
constraint to the PERFORMANCE_ID column of the PERFORMANCE_PARTS table.

To add a Primary Key constraint using the Add Primary Key tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Tables.

A list of tables appears.

3. Right-click PERFORMANCE_PARTS.

A list of choices appears.

4. Click Constraint.

A list of choices appears.

5. Click Add Primary Key.

The Add Primary Key window opens.

6. For Primary Key Name, enter PERF_PERF_ID_PK.

7. For Column 1, select PERFORMANCE_ID from the menu.

8. Click Apply.

The Confirmation window opens.

9. Click OK.

A primary key constraint named PERF_PERF_ID_PK is added to the PERFORMANCE_
ID column of the PERFORMANCE_PARTS table.

The following procedure uses the ALTER TABLE statement to add a Primary Key
constraint to the EVALUATION_ID column of the EVALUATIONS table.

To add a Primary Key constraint using the ALTER TABLE statement:
1. If a SQL Worksheet pane with the tab hr_conn is there, select it. Otherwise, click

the icon SQL Worksheet, as in "Running Queries in SQL Developer" on page 4-2.

2. In the Worksheet pane, type this statement:

ALTER TABLE EVALUATIONS
ADD CONSTRAINT EVAL_EVAL_ID_PK PRIMARY KEY (EVALUATION_ID);

3. Click the icon Run Statement.

The statement runs, adding the Primary Key constraint to the EVALUATION_ID
column of the EVALUATIONS table.

The following procedure uses the Add Foreign Key tool to add two Foreign Key
constraints to the SCORES table.

To add two Foreign Key constraints using the Add Foreign Key tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

Creating and Managing Tables

Creating and Managing Schema Objects 6-9

2. Expand Tables.

A list of tables appears.

3. Right-click SCORES.

A list of choices appears.

4. Click Constraint.

A list of choices appears.

5. Click Add Foreign Key.

The Add Foreign Key window opens.

6. For Foreign Key Name, enter SCORES_EVAL_FK.

7. For Column Name, select EVALUATION_ID from the menu.

8. For Reference Table Name, select EVALUATIONS from the menu.

9. For Referencing Column, select EVALUATION_ID from the menu.

10. Click Apply.

The Confirmation window opens.

11. Click OK.

A foreign key constraint named SCORES_EVAL_FK is added to the EVALUTION_ID
column of the SCORES table, referencing the EVALUTION_ID column of the
EVALUATIONS table.

The following steps add another foreign key constraint to the SCORES table.

12. Right-click SCORES.

A list of tables appears.

13. Click Constraint.

A list of choices appears.

14. Click Add Foreign Key.

The Add Foreign Key window opens.

15. For Foreign Key Name, enter SCORES_PERF_FK.

16. For Column Name, select PERFORMANCE_ID from the menu.

17. For Reference Table Name, select PERFORMANCE_PARTS from the menu.

18. For Referencing Column, select PERFORMANCE_ID from the menu.

19. Click Apply.

The Confirmation window opens.

20. Click OK.

A foreign key constraint named SCORES_PERF_FK is added to the EVALUTION_ID
column of the SCORES table, referencing the EVALUTION_ID column of the
EVALUATIONS table.

The following procedure uses the ALTER TABLE statement to add a Foreign Key
constraint to the EMPLOYEE_ID column of the EVALUATIONS table, referencing the
EMPLOYEE_ID column of the EMPLOYEES table.

Creating and Managing Tables

6-10 Oracle Database Express Edition 2 Day Developer's Guide

To add a Foreign Key constraint using the ALTER TABLE statement:
1. If a SQL Worksheet pane with the tab hr_conn is there, select it. Otherwise, click

the icon SQL Worksheet, as in "Running Queries in SQL Developer" on page 4-2.

2. In the Worksheet pane, type this statement:

ALTER TABLE EVALUATIONS
ADD CONSTRAINT EVAL_EMP_ID_FK FOREIGN KEY (EMPLOYEE_ID)
REFERENCES EMPLOYEES (EMPLOYEE_ID);

3. Click the icon Run Statement.

The statement runs, adding the Foreign Key constraint to the EMPLOYEE_ID column
of the EVALUATIONS table, referencing the EMPLOYEE_ID column of the EMPLOYEES
table.

The following procedure uses the Add Check tool to add a Check constraint to the
SCORES table.

To add a Check constraint using the Add Check tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Tables.

A list of tables appears.

3. Right-click SCORES.

A list of choices appears.

4. Click Constraint.

A list of choices appears.

5. Click Add Check.

The Add Check window opens.

6. For Constraint Name, enter SCORE_VALID.

7. For Check Condition, enter score >= 0 and score <= 9.

8. For Status, accept the default, ENABLE.

9. Click Apply.

The Confirmation window opens.

10. Click OK.

A Check constraint named SCORE_VALID is added to the SCORES table.

See Also:

■ Oracle Database SQL Language Reference for more information
about the ALTER TABLE statement

■ Oracle Database SQL Developer User's Guide for information about
adding constraints to a table when you create it with
SQL Developer

■ Oracle Database SQL Language Reference for information about
adding constraints to a table when you create it with the CREATE
TABLE statement

Creating and Managing Tables

Creating and Managing Schema Objects 6-11

Tutorial: Adding Rows to Tables with the Insert Row Tool
This tutorial shows how to use the Insert Row tool to add six populated rows to the
PERFORMANCE_PARTS table.

To add rows to the PERFORMANCE_PARTS table using the Insert Row tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Tables.

A list of tables appears.

3. Select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

The Data pane appears, showing the names of the columns of the PERFORMANCE_
PARTS table and no rows.

5. In the Data pane, click the icon Insert Row.

A new row appears, with empty columns. A green border around the row number
indicates that the insertion has not been committed.

6. Click the cell under the column heading PERFORMANCE_ID.

7. Type WM.

The value of PERFORMANCE_ID is now WM.

8. Either press the key Tab or click the cell under the column heading NAME.

9. Type Workload Management.

The value of NAME is now Workload Management.

10. Either press the key Tab or click the cell under the column heading WEIGHT.

11. Type 0.2.

The value of WEIGHT is now 0.2.

12. Press the key Enter.

13. Add and populate a second row by repeating steps 5 through 12 with these values:

■ For PERFORMANCE_ID, type BR.

■ For NAME, type Building Relationships.

■ For WEIGHT, type 0.2.

14. Add and populate a third row by repeating steps 5 through 12 with these values:

■ For PERFORMANCE_ID, type CF.

■ For NAME, type Customer Focus.

■ For WEIGHT, type 0.2.

15. Add and populate a fourth row by repeating steps 5 through 12 with these values:

■ For PERFORMANCE_ID, type CM.

■ For NAME, type Communication.

■ For WEIGHT, type 0.2.

16. Add and populate a fifth row by repeating steps 5 through 12 with these values:

Creating and Managing Tables

6-12 Oracle Database Express Edition 2 Day Developer's Guide

■ For PERFORMANCE_ID, type TW.

■ For NAME, type Teamwork.

■ For WEIGHT, type 0.2.

17. Add and populate a sixth row by repeating steps 5 through 12, using these values:

■ For PERFORMANCE_ID, type RO.

■ For NAME, type Results Orientation.

■ For WEIGHT, type 0.2.

18. Click the icon Commit Changes.

The green borders around the row numbers disappear.

Under the Data pane is the label Log.

19. Click the label Log.

The Data Editor Log pane appears.

20. Check the Data Editor Log pane for the message "Commit Successful".

(To hide the Data Editor Log pane, click Log.)

21. In the Data Pane, check the new rows.

Tutorial: Changing Data in Tables in the Data Pane
This tutorial shows how to change three of the WEIGHT values in the PERFORMANCE_
PARTS table (populated in "Tutorial: Adding Rows to Tables with the Insert Row Tool"
on page 6-11) in the Data pane.

To change data in the PERFORMANCE_PARTS table using the Data pane:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Tables.

A list of tables appears.

3. Select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

The Data pane appears, showing the rows of the PERFORMANCE_PARTS table.

5. In the row where NAME is Workload Management:

1. Click the WEIGHT value.

2. Enter the value 0.3.

3. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change
has not been committed.

6. In the row where NAME is Building Relationships:

1. Click the WEIGHT value.

2. Enter the value 0.15.

See Also: "About the INSERT Statement" on page 5-1

Creating and Managing Tables

Creating and Managing Schema Objects 6-13

3. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change
has not been committed.

7. In the row where NAME is Customer Focus:

1. Click the WEIGHT value.

2. Enter the value 0.15.

3. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change
has not been committed.

8. Click the icon Commit Changes.

The asterisks to the left of the row numbers disappear.

Under the Data pane is the label Log.

9. Click the label Log.

The Data Editor Log pane appears.

10. Check the Data Editor Log pane for the message "Commit Successful".

(To hide the Data Editor Log pane, click Log.)

11. In the Data Pane, check the new data.

Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool
This tutorial shows how to use the Delete Selected Row(s) tool to delete a row from the
PERFORMANCE_PARTS table (populated in "Tutorial: Adding Rows to Tables with the
Insert Row Tool" on page 6-11).

To delete row from PERFORMANCE_PARTS using Delete Selected Row(s) tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Tables.

A list of tables appears.

3. Select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

The Data pane appears, showing the rows of the PERFORMANCE_PARTS table.

5. Click the row where NAME is Results Orientation.

6. Click the icon Delete Selected Row(s).

A red border appears around the row number to indicate that the deletion has not
been committed.

7. Click the icon Commit Changes.

The row is deleted.

Under the Data pane is the label Log.

8. Click the label Log.

See Also: "About the UPDATE Statement" on page 5-4

Creating and Managing Tables

6-14 Oracle Database Express Edition 2 Day Developer's Guide

The Data Editor Log pane appears.

9. Check the Data Editor Log pane for the message "Commit Successful".

(To hide the Data Editor Log pane, click Log.)

Managing Indexes
You can create indexes on one or more columns of a table to speed SQL statement
execution on that table. When properly used, indexes are the primary means of
reducing disk I/O.

When you define a primary key on a table, Oracle Database XE creates a Unique index
on the primary key. For example, in "Tutorial: Adding Constraints to Existing Tables"
on page 6-6, you added a Primary Key constraint to the EVALUATION_ID column of the
EVALUATIONS table. Therefore, if you select the EVALUATIONS table in the SQL Developer
navigation frame and click the Indexes tab, the Indexes pane shows a Unique index on
the EVALUATION_ID column.

Topics:

■ Tutorial: Adding an Index with the Create Index Tool

■ Tutorial: Changing an Index with the Edit Index Tool

■ Tutorial: Dropping an Index

Tutorial: Adding an Index with the Create Index Tool
To create an index, use either the SQL Developer tool Create Index or the DDL
statement CREATE INDEX.

This tutorial shows how to use the Create Index tool to add an index to the
EVALUATIONS table. The equivalent DDL statement is:

CREATE INDEX EVAL_JOB_IX
ON EVALUATIONS (JOB_ID ASC) NOPARALLEL;

To add an index to the EVALUATIONS table using the Create Index tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Tables.

A list of tables appears, including EVALUATIONS.

3. Right-click EVALUATIONS.

A list of choices appears.

4. Select Index.

Note: If you delete every row of a table, the empty table still exists.
To delete a table, see "Dropping Tables" on page 6-16.

See Also: "About the DELETE Statement" on page 5-5

See Also: For more information about indexes:

■ Oracle Database Concepts

■ Oracle Database Advanced Application Developer's Guide

Creating and Managing Tables

Creating and Managing Schema Objects 6-15

A list of choices appears.

5. Select Create Index.

The Create Index window opens.

6. For Schema, accept the default, HR.

7. For Name, type EVAL_JOB_IX.

8. Select the tab Definition.

The Definition pane shows the default values for index properties.

9. In the field labeled "Column Name or Expression:", select JOB_ID from the menu.

(For all other properties, accept the default values.)

10. Click OK.

Now the EVALUATIONS table has an index named EVAL_JOB_IX on the column JOB_
ID.

Tutorial: Changing an Index with the Edit Index Tool
To change an index, use either the SQL Developer tool Edit Index or the DDL
statements DROP INDEX and CREATE INDEX.

This tutorial shows how to use the Edit Index tool to reverse the sort order of the index
EVAL_JOB_IX. The equivalent DDL statements are:

DROP INDEX EVAL_JOB_ID;

CREATE INDEX EVAL_JOB_IX
ON EVALUATIONS (JOB_ID DESC) NOPARALLEL;

To reverse the sort order of the index EVAL_JOB_IX using the Edit Index tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Indexes.

A list of indexes appears, including EVAL_JOB_IX.

3. Right-click EVAL_JOB_IX.

A list of choices appears.

4. Click Edit.

A list of choices appears.

5. Click Edit Index.

The Edit Index window opens.

6. In the Edit Index window, change Order to DESC.

7. Click OK.

The Confirm Replace window appears, warning that changing the index replaces
it (that is, drops and then creates it), and asking if you are willing to risk loss of
data.

See Also: Oracle Database SQL Language Reference for information
about the CREATE INDEX statement

Creating and Managing Tables

6-16 Oracle Database Express Edition 2 Day Developer's Guide

8. Click Yes or No.

Tutorial: Dropping an Index
To drop an index, use either the SQL Developer tool Drop or the DDL statement DROP
INDEX.

This tutorial shows how to use the navigation frame and Drop tool to drop the index
EVAL_JOB_IX. The equivalent DDL statement is:

DROP INDEX EVAL_JOB_ID;

To drop the index EVAL_JOB_IX:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Indexes.

A list of indexes appears, including EVAL_JOB_IX.

3. Right-click EVAL_JOB_IX.

A list of choices appears.

4. Click Drop.

The Drop window opens.

5. Click Apply.

The Confirmation window opens.

6. Click OK.

Dropping Tables
To drop a table, use either the SQL Developer navigation frame and Drop tool, or the
DDL statement DROP TABLE.

To drop a table using the Drop tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Tables.

A list of tables appears.

3. Right-click the name of the table to drop.

A list of choices appears.

4. Click Table.

See Also: Oracle Database SQL Language Reference for information
about the ALTER INDEX statement

See Also: Oracle Database SQL Language Reference for information
about the DROP INDEX statement

Caution: Do not drop any of the tables that you created in "Creating
Tables" on page 6-3—you need them for later tutorials. If you want to
practice dropping tables, create simple ones and then drop them.

Creating and Managing Views

Creating and Managing Schema Objects 6-17

A list of choices appears.

5. Click Drop.

The Drop window opens.

6. Click Apply.

The Confirmation window opens.

7. Click OK.

Creating and Managing Views
A view presents the output of a query as a table. In most places that you can use a
table, you can use a view. Views are useful when you need frequent access to
information that is stored in several different tables.

Topics:

■ Creating Views

■ Changing Queries in Views

■ Tutorial: Changing View Names with the Rename Tool

■ Dropping Views

Creating Views
To create views, use either the SQL Developer tool Create View or the DDL statement
CREATE VIEW. This topic shows how to use both of these ways to create these views:

■ SALESFORCE, which contains the names and salaries of the employees in the Sales
department

■ EMP_LOCATIONS, which contains the names and locations of all employees

These view are part of the sample application that the tutorials and examples in this
document show how to develop and deploy.

Topics:

■ Tutorial: Creating a View with the Create View Tool

■ Creating Views with the CREATE VIEW Statement

See Also: Oracle Database SQL Language Reference for information
about the DROP TABLE statement

See Also:

■ Chapter 4, "Selecting Table Data," for information about queries

■ Oracle Database Concepts for additional general information about
views

See Also:

■ Oracle Database SQL Developer User's Guide for more information
about using SQL Developer to create a view

■ Oracle Database SQL Language Reference for more information
about the CREATE VIEW statement

Creating and Managing Views

6-18 Oracle Database Express Edition 2 Day Developer's Guide

Tutorial: Creating a View with the Create View Tool
This tutorial shows how to create the SALESFORCE view using the Create View tool.

To create the SALESFORCE view using the Create View tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Right-click Views.

A list of choices appears.

3. Click New View.

The Create View window opens, with default values for a new view.

4. For Schema, accept the default value, HR.

5. For Name, enter SALESFORCE.

6. Click the tab SQL Query.

The SQL Query pane appears.

7. In the SQL Query field:

■ After SELECT, type:

FIRST_NAME || ' ' || LAST_NAME "Name", SALARY*12 "Annual Salary"

■ After FROM, type:

EMPLOYEES WHERE DEPARTMENT_ID = 80

8. Click Check Syntax.

A message appears in the field SQL Parse Results.

9. If the message is not "No errors found in SQL", return to step 7 and correct the
syntax errors in the query.

10. Click OK.

The view SALESFORCE is created. To see it, expand Views in the navigation frame.

Creating Views with the CREATE VIEW Statement
The CREATE VIEW statement in Example 6–3 creates the EMP_LOCATIONS view, which
joins four tables. (For information about joins, see Section , "Selecting Data from
Multiple Tables.")

Example 6–3 Creating the EMP_LOCATIONS View with CREATE VIEW

CREATE VIEW EMP_LOCATIONS AS
SELECT e.EMPLOYEE_ID,
 e.LAST_NAME || ', ' || e.FIRST_NAME NAME,
 d.DEPARTMENT_NAME DEPARTMENT,
 l.CITY CITY,
 c.COUNTRY_NAME COUNTRY
FROM EMPLOYEES e, DEPARTMENTS d, LOCATIONS l, COUNTRIES c
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID AND
 d.LOCATION_ID = l.LOCATION_ID AND

See Also: Oracle Database SQL Developer User's Guide for more
information about using SQL Developer to create views

Creating and Managing Views

Creating and Managing Schema Objects 6-19

 l.COUNTRY_ID = c.COUNTRY_ID
ORDER BY LAST_NAME;

Result:

View created.

Changing Queries in Views
To change the query in a view, use the DDL statement CREATE VIEW with the OR
REPLACE clause.

The CREATE VIEW OR REPLACE statement in Example 6–4 changes the query in the
SALESFORCE view.

 OR REPLACEchanges the query in the SALESFORCE view

Example 6–4 Changing the Query in the SALESFORCE View

CREATE OR REPLACE VIEW SALESFORCE AS
 SELECT FIRST_NAME || ' ' || LAST_NAME "Name",
 SALARY*12 "Annual Salary"
 FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 80 OR DEPARTMENT_ID = 20;

Tutorial: Changing View Names with the Rename Tool
To change the name of a view, use either the SQL Developer tool Rename or the
RENAME statement.

This tutorial shows how to use the Rename tool to change the name of the SALESFORCE
view. The equivalent DDL statement is:

RENAME SALESFORCE to SALES_MARKETING;

To change the SALESFORCE view using the Rename tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Views.

A list of views appears.

3. Right-click SALESFORCE.

A list of choices appears.

4. Select Rename.

The Rename window opens. It has a New View Name field.

5. In the New View Name field, type SALES_MARKETING.

6. Click Apply.

The Confirmation window opens.

See Also: Oracle Database SQL Language Reference for information
about the CREATE VIEW statement

See Also:

■ Oracle Database SQL Language Reference for information about the
CREATE VIEW statement with the OR REPLACE clause

Creating and Managing Sequences

6-20 Oracle Database Express Edition 2 Day Developer's Guide

7. Click OK.

Dropping Views
To drop a view, use either the SQL Developer navigation frame and Drop tool or the
DDL statement DROP VIEW.

This tutorial shows how to use the navigation frame and Drop tool to drop the view
SALES_MARKETING (changed in "Tutorial: Changing View Names with the Rename
Tool" on page 6-19). The equivalent DDL statement is:

DROP VIEW SALES_MARKETING;

To drop the view SALES_MARKETING using the Drop tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Views.

A list of views appears.

3. Right-click SALES_MARKETING.

A list of choices appears.

4. Click Drop.

The Drop window opens.

5. Click Apply.

The Confirmation window opens.

6. Click OK.

Creating and Managing Sequences
Sequences are schema objects that generate unique sequential values, which are very
useful when you need unique primary keys. The HR schema has three sequences:
DEPARTMENTS_SEQ, EMPLOYEES_SEQ, and LOCATIONS_SEQ.

Sequences are used through the pseudocolumns CURRVAL and NEXTVAL, which return
the current and next values of the sequence, respectively. After creating a sequence,
you must initialize it by using NEXTVAL to get its first value. Only after the sequence is
initialized does CURRVAL return its current value.

Topics:

See Also:

■ Oracle Database SQL Language Reference for information about the
RENAME statement

See Also:

■ Oracle Database SQL Language Reference for information about the
DROP VIEW statement

Tip: When you plan to use a sequence to populate the primary key
of a table, give the sequence a name that reflects this purpose. (This
topic uses the naming convention table_name_SEQ.)

Creating and Managing Sequences

Creating and Managing Schema Objects 6-21

■ Tutorial: Creating a Sequence

■ Dropping Sequences

Tutorial: Creating a Sequence
To create a sequence, use either the SQL Developer tool Create Sequence or the DDL
statement CREATE SEQUENCE.

This tutorial shows how to use the Create Database Sequence tool to create a sequence
to use to generate primary keys for the EVALUATIONS table. The equivalent DDL
statement is:

CREATE SEQUENCE EVALUATIONS_SEQ
INCREMENT BY 1
START WITH 1 ORDER;

This sequence is part of the sample application that the tutorials and examples in this
document show how to develop and deploy.

To create EVALUATIONS_SEQ using the Create Database Sequence tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Right-click Sequences.

A list of choices appears.

3. Click New Sequence.

The Create Database Sequence window opens. The field Schema has the value HR,
and the field Name has the default value, SEQUENCE1.

4. In the Name field, type EVALUATIONS_SEQ over the default value.

5. Click the tab Properties.

The Properties pane appears.

6. In the field Increment, type 1.

7. In the field Start with, type 1.

8. If the check box Cycle is selected, deselect it.

9. Select the check box Order.

10. Click OK.

The sequence EVALUATIONS_SEQ is created. To see it, expand Sequences in the
navigation frame.

See Also:

■ Oracle Database Concepts for information about the sequence
generator

■ Oracle Database SQL Language Reference for more information
about the CURRVAL and NEXTVAL pseudocolumns

■ "Editing Installation Script Files that Create Sequences" on
page 10-6

Creating and Managing Synonyms

6-22 Oracle Database Express Edition 2 Day Developer's Guide

Dropping Sequences
To drop a sequence, use either the SQL Developer navigation frame and Drop tool, or
the DDL statement DROP SEQUENCE.

To drop a sequence using the Drop tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Sequences.

A list of sequences appears.

3. Right-click the name of the sequence to drop.

A list of choices appears.

4. Click Drop.

The Drop window opens.

5. Click Apply.

The Confirmation window opens.

6. Click OK.

Creating and Managing Synonyms
A synonym is an alias for another schema object. Some reasons to use synonyms are
security (for example, to hide the owner and location of an object) and convenience.
Examples of convenience are:

■ Using a short synonym, such as SALES, for a long object name, such as ACME_
CO.SALES_DATA

■ Using a synonym for a renamed object, instead of changing that object name
throughout the applications that use it

See Also:

■ Oracle Database SQL Developer User's Guide for more information
about using SQL Developer to create a sequence

■ Oracle Database SQL Language Reference for information about the
CREATE SEQUENCE statement

■ "Tutorial: Creating a Trigger that Generates a Primary Key for a
Row Before It Is Inserted" on page 8-4 to learn how to create a
trigger that inserts the primary keys created by evaluations_seq
into the EVALUATIONS table

Caution: Do not drop the sequence that you created in "Tutorial:
Creating a Sequence" on page 6-21—you need it for later tutorials. If
you want to practice dropping sequences, create new ones and then
drop them.

See Also: Oracle Database SQL Language Reference for information
about the DROP SEQUENCE statement

Creating and Managing Synonyms

Creating and Managing Schema Objects 6-23

For example, if your application uses a table named DEPARTMENTS, and its name
changes to DIVISIONS, you can create a DEPARTMENTS synonym for that table and
continue to reference it by its original name.

Topics:

■ Creating Synonyms

■ Dropping Synonyms

Creating Synonyms
To create a synonym, use either the SQL Developer tool Create Database Synonym or
the DDL statement CREATE SYNONYM.

This tutorial shows how to use the Create Database Synonym tool to create the
synonym EMP for the EMPLOYEES table. The equivalent DDL statement is:

CREATE SYNONYM EMP FOR EMPLOYEES;

This synonym is part of the sample application that the tutorials and examples in this
document show how to develop and deploy.

To create the synonym EMP using the Create Databse Synonym tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Right-click Synonyms.

A list of choices appears.

3. Click New Synonym.

The Create Database Synonym window opens. The Prompt tab is selected. The
Prompt pane has three empty fields: Synonym Name, Object Owner, and Object
Name.

4. In the Synonym Name field, type EMP.

5. In the Object Owner field, select HR from the menu.

6. In the Object Name field, select EMPLOYEES from the menu.

The synonym refers to a specific schema object; in this case, the table EMPLOYEES.

7. Click Apply.

The Confirmation window appears.

8. Click OK.

The synonym EMP is created. To see it, expand Synonyms in the navigation frame.
You can now use EMP instead of EMPLOYEES.

See Also:

■ Oracle Database Concepts for additional general information about
synonyms

See Also: Oracle Database SQL Language Reference for information
about the CREATE SYNONYM statement

Creating and Managing Synonyms

6-24 Oracle Database Express Edition 2 Day Developer's Guide

Dropping Synonyms
To drop a synonym, use either the SQL Developer navigation frame and Drop tool, or
the DDL statement DROP SYNONYM.

To drop a synonym using the Drop tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Synonyms.

A list of synonyms appears.

3. Right-click the name of the synonym to drop.

A list of choices appears.

4. Click Drop.

The Drop window opens.

5. Click Apply.

The Confirmation window opens.

6. Click OK.

Caution: Do not drop the synonym that you created in "Creating
Synonyms" on page 6-23—you need it for later tutorials. If you want
to practice dropping synonyms, create new ones and then drop them.

See Also: Oracle Database SQL Language Reference for information
about the DROP SYNONYM statement

7

Developing Stored Subprograms and Packages 7-1

7Developing Stored Subprograms and
Packages

This chapter contains the following topics:

■ About Stored Subprograms

■ About Packages

■ About PL/SQL Identifiers

■ About PL/SQL Data Types

■ Creating and Managing Standalone Stored Subprograms

■ Creating and Managing Packages

■ Declaring and Assigning Values to Variables and Constants

■ Controlling Program Flow

■ Using Records and Cursors

■ Using Associative Arrays

■ Handling Exceptions (Run-Time Errors)

About Stored Subprograms
A subprogram is a PL/SQL unit that consists of SQL and PL/SQL statements that
solve a specific problem or perform a set of related tasks. A subprogram can have
parameters, whose values are supplied by the invoker. A subprogram can be either a
procedure or a function. Typically, you use a procedure to perform an action and a
function to compute and return a value.

A stored subprogram is a subprogram that is stored in the database. Because they are
stored in the database, stored programs can be used as building blocks for many
different database applications. (A subprogram that is declared within another
subprogram, or within an anonymous block, is called a nested subprogram or local
subprogram. It cannot be invoked from outside the subprogram or block in which it is
declared. An anonymous block is a block that is not stored in the database.)

Tip: If you have problems creating or running PL/SQL code, check
the Oracle Database trace files. The USER_DUMP_DEST initialization
parameter specifies the current location of the trace files. You can find
the value of this parameter by issuing SHOW PARAMETER USER_DUMP_
DEST in the SQL Worksheet of SQL Developer or in SQL*Plus. For
more information about trace files, see Oracle Database Performance
Tuning Guide.

About Packages

7-2 Oracle Database Express Edition 2 Day Developer's Guide

There are two kinds of stored subprograms:

■ Standalone stored subprogram, which is created at schema level

■ Package subprogram, which is created inside a package

Standalone stored subprograms are useful for testing pieces of program logic, but
when you are sure that they work as intended, Oracle recommends that you put them
into packages.

About Packages
A package is a PL/SQL unit that consists of related subprograms and the explicit
cursors and variables that they use.

Oracle recommends that you put your subprograms into packages. Some of the
reasons are:

■ Packages allow you to hide implementation details from client programs.

Hiding implementation details from client programs is a widely accepted best
practice. Many Oracle customers follow this practice strictly, allowing client
programs to access the database only by invoking PL/SQL subprograms. Some
customers allow client programs to use SELECT statements to retrieve information
from database tables, but require them to invoke PL/SQL subprograms for all
business functions that change the database.

■ Package subprograms must be qualified with package names when invoked,
which ensures that their names will always work.

For example, suppose that you developed a schema-level procedure named
CONTINUE before Oracle Database Express Edition (Oracle Database XE) 11g
Release 1 (11.1). Release 11.1 introduced the CONTINUE statement. Therefore, if you
ported your code to 11.1, it would no longer compile. However, if you had
developed your procedure inside a package, your code would refer to the
procedure as package_name.CONTINUE, so the code would still compile.

■ Package subprograms can send and receive records and collections.

Standalone stored subprograms can send and receive only scalar
parameters—single values with no internal components, such as VARCHAR2,
NUMBER, and DATE.

See Also:

■ Oracle Database Concepts for general information about stored
subprograms

■ Oracle Database PL/SQL Language Reference for complete
information about PL/SQL subprograms

Note: Oracle Database XE supplies many PL/SQL packages to
extend database functionality and provide PL/SQL access to SQL
features. You can use the supplied packages when creating your
applications or for ideas in creating your own stored procedures. For
information about these packages, see Oracle Database PL/SQL Packages
and Types Reference.

About PL/SQL Identifiers

Developing Stored Subprograms and Packages 7-3

About PL/SQL Identifiers
Every PL/SQL subprogram, package, parameter, variable, constant, exception, and
explicit cursor has a name, which is a PL/SQL identifier.

The minimum length of an identifier is one character; the maximum length is 30
characters. The first character must be a letter, but each later character can be either a
letter, numeral, dollar sign ($), underscore (_), or number sign (#). For example, these
are acceptable identifiers:

X
t2
phone#
credit_limit
LastName
oracle$number
money$$$tree
SN##
try_again_

PL/SQL is not case-sensitive for identifiers. For example, PL/SQL considers these to
be the same:

lastname
LastName
LASTNAME

You cannot use a PL/SQL reserved word as an identifier. You can use a PL/SQL
keyword as an identifier, but it is not recommended. For lists of PL/SQL reserved
words and keywords, see Oracle Database PL/SQL Language Reference.

See Also:

■ Oracle Database Concepts for general information about packages

■ Oracle Database PL/SQL Language Reference for more reasons to use
packages

■ Oracle Database PL/SQL Language Reference for complete
information about PL/SQL packages

■ Oracle Database PL/SQL Packages and Types Reference for complete
information about the PL/SQL packages that Oracle provides

Tip: Use meaningful names for identifiers, and follow a naming
convention. For example, start each constant name with con_, each
variable name with var_, and so on.

About PL/SQL Data Types

7-4 Oracle Database Express Edition 2 Day Developer's Guide

About PL/SQL Data Types
Every PL/SQL constant, variable, subprogram parameter, and function return value
has a data type that determines its storage format, constraints, valid range of values,
and operations that can be performed on it.

A PL/SQL data type is either a SQL data type (such as VARCHAR2, NUMBER, and DATE) or
a PL/SQL-only data type. The latter include BOOLEAN, RECORD, REF CURSOR, and many
predefined subtypes. PL/SQL also lets you define your own subtypes.

A subtype is a subset of another data type, which is called its base type. A subtype has
the same valid operations as its base type, but only a subset of its valid values.
Subtypes can increase reliability, provide compatibility with ANSI/ISO types, and
improve readability by indicating the intended use of constants and variables.

The predefined numeric subtype PLS_INTEGER is especially useful, because its
operations use hardware arithmetic, rather than the library arithmetic that its base
type uses.

You cannot use PL/SQL-only data types at schema level (that is, in tables or
standalone stored subprograms). Therefore, to use them in a stored subprogram, you
must put the subprogram in a package.

Creating and Managing Standalone Stored Subprograms
Topics:

■ About Subprogram Structure

■ Tutorial: Creating a Standalone Stored Procedure

■ Tutorial: Creating a Standalone Stored Function

■ Changing Standalone Stored Subprograms

■ Tutorial: Testing a Standalone Stored Function

See Also:

■ Oracle Database PL/SQL Language Reference for additional general
information about PL/SQL identifiers

■ Oracle Database PL/SQL Language Reference for additional
information about PL/SQL naming conventions

■ Oracle Database PL/SQL Language Reference for information about
the scope and visibility of PL/SQL identifiers

■ Oracle Database PL/SQL Language Reference for information how to
collect data on PL/SQL identifiers

■ Oracle Database PL/SQL Language Reference for information about
how PL/SQL resolves identifier names

See Also:

■ Oracle Database PL/SQL Language Reference for general information
about PL/SQL data types

■ Oracle Database PL/SQL Language Reference for information about
the PLS_INTEGER data type

■ "About SQL Data Types" on page 6-2

Creating and Managing Standalone Stored Subprograms

Developing Stored Subprograms and Packages 7-5

■ Dropping Standalone Stored Subprograms

About Subprogram Structure
A subprogram follows PL/SQL block structure; that is, it has:

■ Declarative part (optional)

The declarative part contains declarations of types, constants, variables,
exceptions, explicit cursors, and nested subprograms. These items are local to the
subprogram and cease to exist when the subprogram completes execution.

■ Executable part (required)

The executable part contains statements that assign values, control execution, and
manipulate data.

■ Exception-handling part (optional)

The exception-handling part contains code that handles exceptions (run-time
errors).

Comments can appear anywhere in PL/SQL code. The PL/SQL compiler ignores
them. Adding comments to your program promotes readability and aids
understanding. A single-line comment starts with a double hyphen (--) and extends
to the end of the line. A multiline comment starts with a slash and asterisk (/*) and
ends with an asterisk and a slash (*/).

The structure of a procedure is:

 PROCEDURE name [(parameter_list)]
 { IS | AS }
 [declarative_part]
 BEGIN -- executable part begins
 statement; [statement;]...
 [EXCEPTION -- executable part ends, exception-handling part begins]
 exception_handler; [exception_handler;]...]
 END; /* exception-handling part ends if it exists;
 otherwise, executable part ends */

The structure of a function is like that of a procedure, except that it includes a RETURN
clause and at least one RETURN statement (and some optional clauses that are beyond
the scope of this document):

 FUNCTION name [(parameter_list)] RETURN data_type [clauses]
 { IS | AS }
 [declarative_part]
 BEGIN -- executable part begins
 -- at least one statement must be a RETURN statement
 statement; [statement;]...
 [EXCEPTION -- executable part ends, exception-handling part begins]
 exception_handler; [exception_handler;]...]
 END; /* exception-handling part ends if it exists;
 otherwise, executable part ends */

The code that begins with PROCEDURE or FUNCTION and ends before IS or AS is the
subprogram signature. The declarative, executable, and exception-handling parts

Note: To do the tutorials in this document, you must be connected to
Oracle Database XE as the user HR from SQL Developer.

Creating and Managing Standalone Stored Subprograms

7-6 Oracle Database Express Edition 2 Day Developer's Guide

comprise the subprogram body. The syntax of exception-handler is in "About
Exceptions and Exception Handlers" on page 7-48.

Tutorial: Creating a Standalone Stored Procedure
To create a standalone stored procedure, use either the SQL Developer tool Create
PL/SQL Procedure or the DDL statement CREATE PROCEDURE.

This tutorial shows how to use the Create PL/SQL Procedure tool to create a
standalone stored procedure named ADD_EVALUATION that adds a row to the
EVALUATIONS table.

To create a standalone stored procedure using Create PL/SQL Procedure tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Right-click Procedures.

A list of choices appears.

3. Click New Procedure.

The Create PL/SQL Procedure window opens.

4. For Schema, accept the default value, HR.

5. For Name, change PROCEDURE1 to ADD_EVALUATION.

6. Click the icon Add Column.

A row appears under the column headings. Its fields have these default values:
Name, PARAM1; Type, VARCHAR2; Mode, IN; Default Value, empty.

7. For Name, change param1 to evaluation_id.

8. For Type, select NUMBER from the menu.

9. For Mode, accept the default value, IN.

10. Leave Default Value empty.

11. Add a second parameter by repeating steps 6 through 10 with the Name
employee_id and the Type NUMBER.

12. Add a third parameter by repeating steps 6 through 10 with the Name
evaluation_date and the Type DATE.

13. Add a fourth parameter by repeating steps 6 through 10 with the Name job_id
and the Type VARCHAR2.

14. Add a fifth parameter by repeating steps 6 through 10 with the Name manager_id
and the Type NUMBER.

15. Add a sixth parameter by repeating steps 6 through 10 with the Name
department_id and the Type NUMBER.

16. Add a seventh parameter by repeating steps 6 through 10 with the Name total_
score and the Type NUMBER.

17. Click OK.

See Also: Oracle Database PL/SQL Language Reference for more
information about subprogram parts

Creating and Managing Standalone Stored Subprograms

Developing Stored Subprograms and Packages 7-7

The ADD_EVALUATION pane opens, showing the CREATE PROCEDURE statement that
created the procedure:

CREATE OR REPLACE PROCEDURE ADD_EVALUATION
(
 EVALUATION_ID IN NUMBER
, EMPLOYEE_ID IN NUMBER
, EVALUATION_DATE IN DATE
, JOB_ID IN VARCHAR2
, MANAGER_ID IN NUMBER
, DEPARTMENT_ID IN NUMBER
, TOTAL_SCORE IN NUMBER
) AS
BEGIN
 NULL;
END ADD_EVALUATION;

The title of the ADD_EVALUATION pane is in italic font, indicating that the procedure
is not yet saved in the database.

Because the only statement in the execution part of the procedure is NULL, the
procedure does nothing.

18. Replace NULL with this statement:

INSERT INTO EVALUATIONS (
 evaluation_id,
 employee_id,
 evaluation_date,
 job_id,
 manager_id,
 department_id,
 total_score
)
VALUES (
 ADD_EVALUATION.evaluation_id,
 ADD_EVALUATION.employee_id,
 ADD_EVALUATION.evaluation_date,
 ADD_EVALUATION.job_id,
 ADD_EVALUATION.manager_id,
 ADD_EVALUATION.department_id,
 ADD_EVALUATION.total_score
);

(Qualifying the parameter names with the procedure name ensures that they are
not confused with the columns that have the same names.)

19. From the File menu, select Save.

Oracle Database XE compiles the procedure and saves it. The title of the ADD_
EVALUATION pane is no longer in italic font.

Creating and Managing Standalone Stored Subprograms

7-8 Oracle Database Express Edition 2 Day Developer's Guide

Tutorial: Creating a Standalone Stored Function
To create a standalone stored function, use either the SQL Developer tool Create
PL/SQL Function or the DDL statement CREATE FUNCTION.

This tutorial shows how to use the Create PL/SQL Function tool to create a standalone
stored function named calculate_score that has three parameters and returns a value
of type NUMBER.

To create a standalone stored function using Create PL/SQL Function tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Right-click Functions.

A list of choices appears.

3. Click New Function.

The Create PL/SQL Function window opens. It looks like the Create PL/SQL
Procedure window (see "Tutorial: Creating a Standalone Stored Procedure" on
page 7-6) except that its Parameters pane has a row for the value that the function
returns. In that row, the value of Name is <Return> and the default value of Type
is VARCHAR2.

4. For Schema, accept the default value, HR.

5. For Name, change FUNCTION1 to calculate_score.

6. In the Parameters pane, in the Type field of the only row, select NUMBER from the
menu.

7. Click the icon Add Column.

A row appears under the column headings. Its fields have these default values:
Name, PARAM1; Type, VARCHAR2; Mode, IN; Default Value, empty.

8. For Name, change PARAM1 to cat.

9. For Type, accept the default, VARCHAR2.

10. For Mode, accept the default value, IN.

11. Leave Default Value empty.

12. Add a second parameter by repeating steps 7 through 11 with the Name score
and the Type NUMBER.

13. Add a third parameter by repeating steps 7 through 11 with the Name weight and
the Type NUMBER.

14. Click OK.

See Also:

■ Oracle Database SQL Developer User's Guide for another example of
using SQL Developer to create a standalone stored procedure

■ "About Data Definition Language (DDL) Statements" on page 6-1
for general information that applies to the CREATE PROCEDURE
statement

■ Oracle Database PL/SQL Language Reference for information about
the CREATE PROCEDURE statement

Creating and Managing Standalone Stored Subprograms

Developing Stored Subprograms and Packages 7-9

The CALCULATE_SCORE pane opens, showing the CREATE FUNCTION statement that
created the function:

CREATE OR REPLACE FUNCTION CALCULATE_SCORE
(
 CAT IN VARCHAR2
, SCORE IN NUMBER
, WEIGHT IN NUMBER
) RETURN NUMBER AS
BEGIN
 RETURN NULL;
END CALCULATE_SCORE;

The title of the CALCULATE_SCORE pane is in italic font, indicating that the function
is not yet saved in the database.

Because the only statement in the execution part of the function is RETURN NULL, the
function does nothing.

15. Replace NULL with score * weight.

16. Select Save from the File menu.

Oracle Database XE compiles the function and saves it. The title of the CALCULATE_
SCORE pane is no longer in italic font.

Changing Standalone Stored Subprograms
To change a standalone stored subprogram, use either the SQL Developer tool Edit or
the DDL statement ALTER PROCEDURE or ALTER FUNCTION.

To change a standalone stored subprogram using the Edit tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand either Functions or Procedures.

A list of functions or procedures appears.

3. Click the function or procedure to change.

To the right of the Connections pane, a frame appears. Its top tab has the name of
the subprogram to change. Under the top tab are subtabs.

4. Click the subtab Code.

The Code pane appears, showing the code that created the subprogram. The Code
pane is in write mode. (Clicking the pencil icon switches the mode from write
mode to read only, or the reverse.)

5. In the Code pane, change the code.

The title of the pane changes to italic font, indicating that the change is not yet
saved in the database.

See Also:

■ "About Data Definition Language (DDL) Statements" on page 6-1
for general information that applies to the CREATE FUNCTION
statement

■ Oracle Database PL/SQL Language Reference for information about
the CREATE FUNCTION statement

Creating and Managing Standalone Stored Subprograms

7-10 Oracle Database Express Edition 2 Day Developer's Guide

6. Select Save from the File menu.

Oracle Database XE compiles the subprogram and saves it. The title of the pane is
no longer in italic font.

Tutorial: Testing a Standalone Stored Function
This tutorial shows how to use the SQL Developer tool Run to test the standalone
stored function calculate_score.

To test the CALCULATE_SCORE function using the Run tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Functions.

A list of functions appears.

3. Right-click CALCULATE_SCORE.

A list of choices appears.

4. Click Run.

The Run PL/SQL window opens. Its PL/SQL Block frame includes this code:

v_Return := CALCULATE_SCORE (
 CAT => CAT,
 SCORE => SCORE,
 WEIGHT => WEIGHT
);

5. Change the values of SCORE and WEIGHT to 8 and 0.2, respectively:

v_Return := CALCULATE_SCORE (
 CAT => CAT,
 SCORE => 8,
 WEIGHT => 0.2
);

6. Click OK.

Under the Code pane, the Running window opens, showing this result:

Connecting to the database hr_conn.
Process exited.
Disconnecting from the database hr_conn.

To the right of the tab Running is the tab Output Variables.

7. Click the tab Output Variables.

See Also:

■ "About Data Definition Language (DDL) Statements" on page 6-1
for general information that applies to the ALTER PROCEDURE and
ALTER FUNCTION statements

■ Oracle Database PL/SQL Language Reference for information about
the ALTER PROCEDURE statement

■ Oracle Database PL/SQL Language Reference for information about
the ALTER FUNCTION statement

Creating and Managing Packages

Developing Stored Subprograms and Packages 7-11

Two frames appear, Variable and Value, which contain <Return Value> and 1.6,
respectively.

Dropping Standalone Stored Subprograms
To drop a standalone stored subprogram, use either the SQL Developer navigation
frame and Drop tool, or the DDL statement DROP PROCEDURE or DROP FUNCTION.

To drop a standalone stored subprogram using the Drop tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand either Functions or Procedures.

A list of functions or procedures appears.

3. Right-click the name of the function or procedure to drop.

A list of choices appears.

4. Click Drop.

The Drop window opens.

5. Click Apply.

The Confirmation window opens.

6. Click OK.

Creating and Managing Packages
Topics:

■ About Package Structure

■ Tutorial: Creating a Package Specification

■ Tutorial: Changing a Package Specification

■ Tutorial: Creating a Package Body

■ Dropping a Package

See Also: Oracle Database SQL Developer User's Guide for information
about using SQL Developer to run and debug procedures and
functions

See Also:

■ "About Data Definition Language (DDL) Statements" on page 6-1
for general information that applies to the DROP PROCEDURE and
DROP FUNCTION statements

■ Oracle Database SQL Language Reference for information about the
DROP PROCEDURE statement

■ Oracle Database SQL Language Reference for information about the
DROP FUNCTION statement

See Also: "Tutorial: Declaring Variables and Constants in a
Subprogram" on page 7-16, which shows how to change a package
body

Creating and Managing Packages

7-12 Oracle Database Express Edition 2 Day Developer's Guide

About Package Structure
A package always has a specification, and it usually has a body.

The package specification defines the package, declaring the types, variables,
constants, exceptions, explicit cursors, and subprograms that can be referenced from
outside the package. A package specification is an application program interface
(API): It has all the information that client programs need to invoke its subprograms,
but no information about their implementation.

The package body defines the queries for the explicit cursors, and the code for the
subprograms, that are declared in the package specification (therefore, a package with
neither explicit cursors nor subprograms does not need a body). The package body can
also define local subprograms, which are not declared in the specification and can be
invoked only by other subprograms in the package. Package body contents are hidden
from client programs. You can change the package body without invalidating the
applications that call the package.

Tutorial: Creating a Package Specification
To create a package specification, use either the SQL Developer tool Create PL/SQL
Package or the DDL statement CREATE PACKAGE.

This tutorial shows how to use the Create PL/SQL Package tool to create a
specification for a package named EMP_EVAL.

This package specification is the API for the sample application that the tutorials and
examples in this document show how to develop and deploy.

To create a package specification using Create PL/SQL Package tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Right-click Packages.

A list of choices appears.

3. Click New Package.

The Create PL/SQL Package window opens. The field Schema has the value HR,
the field Name has the default value PACKAGE1, and the check box Add New
Source In Lowercase is deselected.

4. For Schema, accept the default value, HR.

5. For Name, change PACKAGE1 to EMP_EVAL.

6. Click OK.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that created the
package:

CREATE OR REPLACE PACKAGE emp_eval AS

 /* TODO enter package declarations (types, exceptions, methods etc) here */

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about the package specification

■ Oracle Database PL/SQL Language Reference for more information
about the package body

Creating and Managing Packages

Developing Stored Subprograms and Packages 7-13

END emp_eval;

The title of the pane is in italic font, indicating that the package is not saved to the
database.

7. (Optional) In the CREATE PACKAGE statement, replace the comment with
declarations.

If you do not do this step now, you can do it later, as shown in "Tutorial: Changing
a Package Specification" on page 7-13.

8. From the File menu, select Save.

Oracle Database XE compiles the package and saves it. The title of the EMP_EVAL
pane is no longer in italic font.

Tutorial: Changing a Package Specification
To change a package specification, use either the SQL Developer tool Edit or the DDL
statement CREATE PACKAGE with the OR REPLACE clause.

This tutorial shows how to use the Edit tool to change the specification for the EMP_
EVAL package. Specifically, the tutorial shows how to add declarations for a procedure,
eval_department, and a function, calculate_score.

To change EMP_EVAL package specification using the Edit tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Packages.

A list of packages appears.

3. Right-click EMP_EVAL.

A list of choices appears.

4. Click Edit.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that created the
package:

CREATE OR REPLACE PACKAGE emp_eval AS

 /* TODO enter package declarations (types, exceptions, methods etc) here */

END emp_eval;

The title of the pane is not in italic font, indicating that the package is saved in the
database.

5. In the EMP_EVAL pane, replace the comment with this code:

PROCEDURE eval_department (dept_id IN NUMBER);

FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER;

See Also: Oracle Database PL/SQL Language Reference for information
about the CREATE PACKAGE statement (for the package specification)

Creating and Managing Packages

7-14 Oracle Database Express Edition 2 Day Developer's Guide

The title of the EMP_EVAL pane changes to italic font, indicating that the changes
have not been saved to the database.

6. Click the icon Compile.

The changed package specification compiles and is saved to the database. The title
of the EMP_EVAL pane is no longer in italic font.

Tutorial: Creating a Package Body
To create a package body, use either the SQL Developer tool Create Body or the DDL
statement CREATE PACKAGE BODY.

This tutorial shows how to use the Create Body tool to create a body for the EMP_EVAL
package.

This package body will contain the implementation details of the sample application
that the tutorials and examples in this document show how to develop and deploy.

To create a body for the package EMP_EVAL using the Create Body tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Packages.

A list of packages appears.

3. Right-click EMP_EVAL.

A list of choices appears.

4. Click Create Body.

The EMP_EVAL Body pane appears, showing the automatically generated code for
the package body:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

 PROCEDURE eval_department(dept_id IN NUMBER) AS
 BEGIN
 /* TODO implementation required */
 NULL;
 END eval_department;

 FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 BEGIN
 /* TODO implementation required */
 RETURN NULL;
 END calculate_score;

END EMP_EVAL;

The title of the pane is in italic font, indicating that the code is not saved in the
database.

5. (Optional) In the CREATE PACKAGE BODY statement:

See Also: Oracle Database PL/SQL Language Reference for information
about the CREATE PACKAGE statement with the OR REPLACE clause

Declaring and Assigning Values to Variables and Constants

Developing Stored Subprograms and Packages 7-15

■ Replace the comments with executable statements.

■ (Optional) In the executable part of the procedure, either delete NULL or
replace it with an executable statement.

■ (Optional) In the executable part of the function, either replace NULL with
another expression.

If you do not do this step now, you can do it later, as shown in "Tutorial: Declaring
Variables and Constants in a Subprogram" on page 7-16.

6. Click the icon Compile.

The changed package body compiles and is saved to the database. The title of the
EMP_EVAL Body pane is no longer in italic font.

Dropping a Package
To drop a package (specification and body), use either the SQL Developer navigation
frame and Drop tool, or the DDL statement DROP PACKAGE.

To drop a package using the Drop tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Packages.

A list of packages appears.

3. Right-click the name of the package to drop.

A list of choices appears.

4. Click Drop Package.

The Drop window opens.

5. Click Apply.

The Confirmation window opens.

6. Click OK.

Declaring and Assigning Values to Variables and Constants
One significant advantage that PL/SQL has over SQL is that PL/SQL lets you declare
and use variables and constants.

A variable or constant declared in a package specification can be used by any program
that has access to the package. A variable or constant declared in a package body or
subprogram is local to that package or subprogram.

A variable holds a value of a particular data type. Your program can change the value
at run time. A constant holds a value that cannot be changed.

A variable or constant can have any PL/SQL data type. When declaring a variable,
you can assign it an initial value; if you do not, its initial value is NULL. When declaring

See Also: Oracle Database PL/SQL Language Reference for information
about the CREATE PACKAGE BODY statement (for the package body)

See Also: Oracle Database PL/SQL Language Reference for information
about the DROP PACKAGE statement

Declaring and Assigning Values to Variables and Constants

7-16 Oracle Database Express Edition 2 Day Developer's Guide

a constant, you must assign it an initial value. To assign an initial value to a variable or
constant, use the assignment operator (:=).

Topics:

■ Tutorial: Declaring Variables and Constants in a Subprogram

■ Ensuring that Variables, Constants, and Parameters Have Correct Data Types

■ Tutorial: Changing Declarations to Use the %TYPE Attribute

■ Assigning Values to Variables

Tutorial: Declaring Variables and Constants in a Subprogram
This tutorial shows how to use the SQL Developer tool Edit to declare variables and
constants in the EMP_EVAL.calculate_score function (specified in "Tutorial: Creating a
Package Specification" on page 7-12). (This tutorial is also an example of changing a
package body.)

To declare variables and constants in calculate_score function:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Packages.

A list of packages appears.

3. Expand EMP_EVAL.

A list appears.

4. Right-click EMP_EVAL Body.

A list of choices appears.

5. Click Edit.

The EMP_EVAL Body pane appears, showing the code for the package body:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

 PROCEDURE eval_department (dept_id IN NUMBER) AS

 BEGIN
 /* TODO implementation required */
 NULL;
 END eval_department;

 FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 BEGIN
 /* TODO implementation required */
 RETURN NULL;

Tip: Declare all values that do not change as constants. This practice
optimizes your compiled code and makes your source code easier to
maintain.

See Also: Oracle Database PL/SQL Language Reference for general
information about variables and constants

Declaring and Assigning Values to Variables and Constants

Developing Stored Subprograms and Packages 7-17

 END calculate_score;

END EMP_EVAL;

6. Between RETURN NUMBER AS and BEGIN, add these variable and constant
declarations:

n_score NUMBER(1,0); -- variable
n_weight NUMBER; -- variable
max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1

The title of the EMP_EVAL Body pane changes to italic font, indicating that the code
is not saved in the database.

7. From the File menu, select Save.

Oracle Database XE compiles and saves the changed package body. The title of the
EMP_EVAL Body pane is no longer in italic font.

Ensuring that Variables, Constants, and Parameters Have Correct Data Types
After "Tutorial: Declaring Variables and Constants in a Subprogram" on page 7-16, the
code for the calculate_score function, in the body of the package EMP_EVAL, is:

FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 n_score NUMBER(1,0); -- variable
 n_weight NUMBER; -- variable
 max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
 max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1
 BEGIN
 /* TODO implementation required */
 RETURN NULL;
 END calculate_score;

The variables, constants, and parameters of the function represent values from the
tables SCORES and PERFORMANCE_PARTS:

■ Variable n_score will hold a value from the SCORE column of the SCORES table, and
constant max_score will be compared to such values.

■ Variable n_weight will hold a value from the WEIGHT column of the PERFORMANCE_
PARTS table, and constant max_weight will be compared to such values.

■ Parameter evaluation_id will hold a value from the EVALUATION_ID column of the
SCORES table.

■ Parameter performance_id will hold a value from the PERFORMANCE_ID column of
the SCORES table.

Therefore, each variable, constant, and parameter has the same data type as its
corresponding column.

See Also:

■ Oracle Database PL/SQL Language Reference for general information
about declaring variables and constants

■ "Assigning Values to Variables with the Assignment Operator" on
page 7-20

Declaring and Assigning Values to Variables and Constants

7-18 Oracle Database Express Edition 2 Day Developer's Guide

If the data types of the columns change, you want the data types of the variables,
constants, and parameters to change to the same data types; otherwise, the calculate_
score function will be invalidated.

To ensure that the data types of the variables, constants, and parameters will always
match those of the columns, declare them with the %TYPE attribute. The %TYPE attribute
supplies the data type of a table column or another variable, ensuring the correct data
type assignment.

Tutorial: Changing Declarations to Use the %TYPE Attribute
This tutorial shows how to use the SQL Developer tool Edit to change the declarations
of the variables, constants, and formal parameters of the EMP_EVAL.calculate_score
function (shown in "Tutorial: Declaring Variables and Constants in a Subprogram" on
page 7-16) to declarations that use the %TYPE attribute.

To change the declarations in calculate_score to use %TYPE:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Packages.

A list of packages appears.

3. Expand EMP_EVAL.

A list appears.

4. Right-click EMP_EVAL Body.

A list of choices appears.

5. Click Edit.

The EMP_EVAL Body pane appears, showing the code for the package body:

CREATE OR REPLACE
PACKAGE BODY emp_eval AS

 PROCEDURE eval_department (dept_id IN NUMBER) AS
 BEGIN
 /* TODO implementation required */
 NULL;
 END eval_department;

 FUNCTION calculate_score (evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER AS
 n_score NUMBER(1,0); -- variable
 n_weight NUMBER; -- variable
 max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
 max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1
 BEGIN
 /* TODO implementation required */

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about the %TYPE attribute

■ Oracle Database PL/SQL Language Reference for the syntax of the
%TYPE attribute

Declaring and Assigning Values to Variables and Constants

Developing Stored Subprograms and Packages 7-19

 RETURN NULL;
 END calculate_score;

END emp_eval;

6. In the code for the function, make the changes shown in bold font:

 FUNCTION calculate_score (evaluation_id IN SCORES.EVALUATION_ID%TYPE
 , performance_id IN SCORES.PERFORMANCE_ID%TYPE)
 RETURN NUMBER AS
 n_score SCORES.SCORE%TYPE;
 n_weight PERFORMANCE_PARTS.WEIGHT%TYPE;
 max_score CONSTANT SCORES.SCORE%TYPE := 9;
 max_weight CONSTANT PERFORMANCE_PARTS.WEIGHT%TYPE := 1;

7. Right-click EMP_EVAL.

A list of choices appears.

8. Click Edit.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that created the
package:

CREATE OR REPLACE PACKAGE EMP_EVAL AS

PROCEDURE eval_department(dept_id IN NUMBER);
FUNCTION calculate_score(evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER;

END EMP_EVAL;

9. In the code for the function, make the changes shown in bold font:

FUNCTION calculate_score(evaluation_id IN scores.evaluation_id%TYPE
 , performance_id IN scores.performance_id%TYPE)

10. Right-click EMP_EVAL.

A list of choices appears.

11. Click Compile.

12. Right-click EMP_EVAL Body.

A list of choices appears.

13. Click Compile.

Assigning Values to Variables
You can assign a value to a variable in these ways:

■ Use the assignment operator to assign it the value of an expression.

■ Use the SELECT INTO or FETCH statement to assign it a value from a table.

■ Pass it to a subprogram as an OUT or IN OUT parameter, and then assign the value
inside the subprogram

■ Bind the variable to a value.

Topics:

■ Assigning Values to Variables with the Assignment Operator

Declaring and Assigning Values to Variables and Constants

7-20 Oracle Database Express Edition 2 Day Developer's Guide

■ Assigning Values to Variables with the SELECT INTO Statement

Assigning Values to Variables with the Assignment Operator
With the assignment operator (:=), you can assign the value of an expression to a
variable in either the declarative or executable part of a subprogram.

In the declarative part of a subprogram, you can assign an initial value to a variable
when you declare it. The syntax is:

variable_name data_type := expression;

In the executable part of a subprogram, you can assign a value to a variable with an
assignment statement. The syntax is:

variable_name := expression;

Example 7–1 shows, in bold font, the changes to make to the EMP_EVAL.calculate_
score function to add a variable, running_total, and use it as the return value of the
function. The assignment operator appears in both the declarative and executable
parts of the function. (The data type of running_total must be NUMBER, rather than
SCORES.SCORE%TYPE or PERFORMANCE_PARTS.WEIGHT%TYPE, because it holds the product
of two NUMBER values with different precisions and scales.)

Example 7–1 Assigning Values to a Variable with Assignment Operator

FUNCTION calculate_score(evaluation_id IN SCORES.EVALUATION_ID%TYPE
 , performance_id IN SCORES.PERFORMANCE_ID%TYPE)
 RETURN NUMBER AS
 n_score SCORES.SCORE%TYPE;
 n_weight PERFORMANCE_PARTS.WEIGHT%TYPE;
 running_total NUMBER := 0;
 max_score CONSTANT SCORES.SCORE%TYPE := 9;
 max_weight CONSTANT PERFORMANCE_PARTS.WEIGHT%TYPE:= 1;
BEGIN
 running_total := max_score * max_weight;
 RETURN running_total;
END calculate_score;

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about assigning values to variables

■ Oracle Database Express Edition 2 Day + .NET Developer's Guide for
Microsoft Windows for information about binding variables

■ Oracle Database Express Edition 2 Day + PHP Developer's Guide for
information about binding variables

■ Oracle Database Express Edition 2 Day + Java Developer's Guide for
information about binding variables

■ Oracle Database Express Edition 2 Day + Application Express
Developer's Guide for information about binding variables

See Also:

■ Oracle Database PL/SQL Language Reference for variable declaration
syntax

■ Oracle Database PL/SQL Language Reference for assignment
statement syntax

Declaring and Assigning Values to Variables and Constants

Developing Stored Subprograms and Packages 7-21

Assigning Values to Variables with the SELECT INTO Statement
To use table values in subprograms or packages, you must assign them to variables
with SELECT INTO statements.

Example 7–2 shows, in bold font, the changes to make to the EMP_EVAL.calculate_
score function to have it calculate running_total from table values.

Example 7–2 Assigning Table Values to Variables with SELECT INTO

FUNCTION calculate_score (evaluation_id IN scores.evaluation_id%TYPE
 , performance_id IN scores.performance_id%TYPE)
 RETURN NUMBER AS

 n_score scores.score%TYPE;
 n_weight performance_parts.weight%TYPE;
 running_total NUMBER := 0;
 max_score CONSTANT scores.score%TYPE := 9;
 max_weight CONSTANT performance_parts.weight%TYPE:= 1;
BEGIN
 SELECT s.score INTO n_score
 FROM SCORES s
 WHERE evaluation_id = s.evaluation_id
 AND performance_id = s.performance_id;

 SELECT p.weight INTO n_weight
 FROM PERFORMANCE_PARTS p
 WHERE performance_id = p.performance_id;

 running_total := n_score * n_weight;
 RETURN running_total;
END calculate_score;

The add_eval procedure in Example 7–3 inserts a row into the EVALUATIONS table,
using values from the corresponding row in the EMPLOYEES table. Add the add_eval
procedure to the body of the EMP_EVAL package, but not to the specification. Because it
is not in the specification, add_eval is local to the package—it can be invoked only by
other subprograms in the package, not from outside the package.

Example 7–3 Inserting a Table Row with Values from Another Table

PROCEDURE add_eval (employee_id IN EMPLOYEES.EMPLOYEE_ID%TYPE
 , today IN DATE)
AS
 job_id EMPLOYEES.JOB_ID%TYPE;
 manager_id EMPLOYEES.MANAGER_ID%TYPE;
 department_id EMPLOYEES.DEPARTMENT_ID%TYPE;
BEGIN
 SELECT e.job_id INTO job_id
 FROM EMPLOYEES e
 WHERE employee_id = e.employee_id;

 SELECT e.manager_id INTO manager_id
 FROM EMPLOYEES e
 WHERE employee_id = e.employee_id;

 SELECT e.department_id INTO department_id
 FROM EMPLOYEES e
 WHERE employee_id = e.employee_id;

 INSERT INTO EVALUATIONS (

Controlling Program Flow

7-22 Oracle Database Express Edition 2 Day Developer's Guide

 evaluation_id,
 employee_id,
 evaluation_date,
 job_id,
 manager_id,
 department_id,
 total_score
)
 VALUES (
 evaluations_seq.NEXTVAL, -- evaluation_id
 add_eval.employee_id, -- employee_id
 add_eval.today, -- evaluation_date
 add_eval.job_id, -- job_id
 add_eval.manager_id, -- manager_id
 add_eval.department_id, -- department_id
 0 -- total_score
);
END add_eval;

Controlling Program Flow
Unlike SQL, which runs statements in the order in which you enter them, PL/SQL has
control statements that let you control the flow of your program.

Topics:

■ About Control Statements

■ Using the IF Statement

■ Using the CASE Statement

■ Using the FOR LOOP Statement

■ Using the WHILE LOOP Statement

■ Using the Basic LOOP and EXIT WHEN Statements

About Control Statements
PL/SQL has three categories of control statements:

■ Conditional selection statements, which let you execute different statements for
different data values.

The conditional selection statements are IF and and CASE.

■ Loop statements, which let you repeat the same statements with a series of
different data values.

The loop statements are FOR LOOP, WHILE LOOP and basic LOOP.

The EXIT statement transfers control to the end of a loop. The CONTINUE statement
exits the current iteration of a loop and transfers control to the next iteration. Both
EXIT and CONTINUE have an optional WHEN clause, in which you can specify a
condition.

■ Sequential control statements, which let you go to a specified, labeled statement,
or to do nothing.

The sequential control statements are GOTO and and NULL.

See Also: Oracle Database PL/SQL Language Reference for more
information about the SELECT INTO statement

Controlling Program Flow

Developing Stored Subprograms and Packages 7-23

Using the IF Statement
The IF statement either executes or skips a sequence of statements, depending on the
value of a Boolean expression.

The IF statement has this syntax:

IF boolean_expression THEN statement [, statement]
[ELSIF boolean_expression THEN statement [, statement]]...
[ELSE statement [, statement]]
END IF;

Suppose that your company evaluates employees twice a year in the first 10 years of
employment, but only once a year afterward. You want a function that returns the
evaluation frequency for an employee. You can use an IF statement to determine the
return value of the function, as in Example 7–4.

Add the eval_frequency function to the body of the EMP_EVAL package, but not to the
specification. Because it is not in the specification, eval_frequency is local to the
package—it can be invoked only by other subprograms in the package, not from
outside the package.

Example 7–4 IF Statement that Determines Return Value of Function

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN
 eval_freq := 1;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

See Also:

■ Oracle Database PL/SQL Language Reference for an overview of
PL/SQL control statements

See Also:

■ Oracle Database PL/SQL Language Reference for the syntax of the IF
statement

■ Oracle Database PL/SQL Language Reference for more information
about using the IF statement

Controlling Program Flow

7-24 Oracle Database Express Edition 2 Day Developer's Guide

Using the CASE Statement
The CASE statement chooses from a sequence of conditions, and executes the
corresponding statement.

The simple CASE statement evaluates a single expression and compares it to several
potential values. It has this syntax:

CASE expression
WHEN value THEN statement
[WHEN value THEN statement]...
[ELSE statement [, statement]...]
END CASE;

The searched CASE statement evaluates multiple Boolean expressions and chooses the
first one whose value is TRUE. For information about the searched CASE statement, see
Oracle Database PL/SQL Language Reference.

Suppose that, if an employee is evaluated only once a year, you want the eval_
frequency function to suggest a salary increase, which depends on the JOB_ID.

Change the eval_frequency function as shown in bold font in Example 7–5. (For
information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE, see
Oracle Database PL/SQL Packages and Types Reference.)

Example 7–5 CASE Statement that Determines Which String to Print

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN
 eval_freq := 1;

 SELECT JOB_ID INTO j_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 CASE j_id
 WHEN 'PU_CLERK' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 8% salary increase for employee # ' || emp_id);
 WHEN 'SH_CLERK' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 7% salary increase for employee # ' || emp_id);
 WHEN 'ST_CLERK' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 6% salary increase for employee # ' || emp_id);
 WHEN 'HR_REP' THEN DBMS_OUTPUT.PUT_LINE(

Tip: When you can use either a CASE statement or nested IF
statements, use a CASE statement—it is both more readable and more
efficient.

Controlling Program Flow

Developing Stored Subprograms and Packages 7-25

 'Consider 5% salary increase for employee # ' || emp_id);
 WHEN 'PR_REP' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 5% salary increase for employee # ' || emp_id);
 WHEN 'MK_REP' THEN DBMS_OUTPUT.PUT_LINE(
 'Consider 4% salary increase for employee # ' || emp_id);
 ELSE DBMS_OUTPUT.PUT_LINE(
 'Nothing to do for employee #' || emp_id);
 END CASE;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

Using the FOR LOOP Statement
The FOR LOOP statement repeats a sequence of statements once for each integer in the
range lower_bound through upper_bound. Its syntax is:

FOR counter IN lower_bound..upper_bound LOOP
 statement [, statement]...
END LOOP;

The statements between LOOP and END LOOP can use counter, but cannot change its
value.

Suppose that, instead of only suggesting a salary increase, you want the eval_
frequency function to report what the salary would be if it increased by the suggested
amount every year for five years.

Change the eval_frequency function as shown in bold font in Example 7–6. (For
information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE, see
Oracle Database PL/SQL Packages and Types Reference.)

Example 7–6 FOR LOOP Statement that Computes Salary After Five Years

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;
 sal EMPLOYEES.SALARY%TYPE;
 sal_raise NUMBER(3,3) := 0;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES

See Also:

■ "Using CASE Expressions in Queries" on page 4-29

■ Oracle Database PL/SQL Language Reference for the syntax of the
CASE statement

■ Oracle Database PL/SQL Language Reference for more information
about using the CASE statement

Controlling Program Flow

7-26 Oracle Database Express Edition 2 Day Developer's Guide

 WHERE EMPLOYEE_ID = emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN
 eval_freq := 1;

 SELECT JOB_ID INTO j_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 SELECT SALARY INTO sal
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 CASE j_id
 WHEN 'PU_CLERK' THEN sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN sal_raise := 0.06;
 WHEN 'HR_REP' THEN sal_raise := 0.05;
 WHEN 'PR_REP' THEN sal_raise := 0.05;
 WHEN 'MK_REP' THEN sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (sal_raise != 0) THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || sal || ' increases by ' ||
 ROUND((sal_raise * 100),0) ||
 '% each year for 5 years, it will be:');

 FOR i IN 1..5 LOOP
 sal := sal * (1 + sal_raise);
 DBMS_OUTPUT.PUT_LINE(ROUND(sal, 2) || ' after ' || i || ' year(s)');
 END LOOP;
 END;
 END IF;

 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

Using the WHILE LOOP Statement
The WHILE LOOP statement repeats a sequence of statements while a condition is TRUE.
Its syntax is:

WHILE condition LOOP
 statement [, statement]...
END LOOP;

See Also:

■ Oracle Database PL/SQL Language Reference for the syntax of the FOR
LOOP statement

■ Oracle Database PL/SQL Language Reference for more information
about using the FOR LOOP statement

Controlling Program Flow

Developing Stored Subprograms and Packages 7-27

Suppose that the eval_frequency function uses the WHILE LOOP statement instead of
the FOR LOOP statement, and ends after the proposed salary exceeds the maximum
salary for the JOB_ID.

Change the eval_frequency function as shown in bold font in Example 7–7. (For
information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE, see
Oracle Database PL/SQL Packages and Types Reference.)

Example 7–7 WHILE LOOP Statement that Computes Salary to Maximum

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;
 sal EMPLOYEES.SALARY%TYPE;
 sal_raise NUMBER(3,3) := 0;
 sal_max JOBS.MAX_SALARY%TYPE;

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN
 eval_freq := 1;

 SELECT JOB_ID INTO j_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 SELECT SALARY INTO sal
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 SELECT MAX_SALARY INTO sal_max
 FROM JOBS
 WHERE JOB_ID = j_id;

 CASE j_id
 WHEN 'PU_CLERK' THEN sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN sal_raise := 0.06;
 WHEN 'HR_REP' THEN sal_raise := 0.05;
 WHEN 'PR_REP' THEN sal_raise := 0.05;
 WHEN 'MK_REP' THEN sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (sal_raise != 0) THEN

Note: If the statements between LOOP and END LOOP never cause
condition to become FALSE, the WHILE LOOP statement runs
indefinitely.

Controlling Program Flow

7-28 Oracle Database Express Edition 2 Day Developer's Guide

 BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || sal || ' increases by ' ||
 ROUND((sal_raise * 100),0) ||
 '% each year, it will be:');

 WHILE sal <= sal_max LOOP
 sal := sal * (1 + sal_raise);
 DBMS_OUTPUT.PUT_LINE(ROUND(sal, 2));
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Maximum salary for this job is ' || sal_max);
 END;
 END IF;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

Using the Basic LOOP and EXIT WHEN Statements
The basic LOOP statement repeats a sequence of statements. Its syntax is:

LOOP
 statement [, statement]...
END LOOP;

At least one statement must be an EXIT statement; otherwise, the LOOP statement runs
indefinitely.

The EXIT WHEN statement (the EXIT statement with its optional WHEN clause) exits a loop
when a condition is TRUE and transfers control to the end of the loop.

In the eval_frequency function, in the last iteration of the WHILE LOOP statement, the
last computed value usually exceeds the maximum salary.

Change the WHILE LOOP statement to a basic LOOP statement that includes an EXIT WHEN
statement, as shown in Example 7–8.

WHILE LOOP

Example 7–8 Using the EXIT WHEN Statement

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 j_id EMPLOYEES.JOB_ID%TYPE;
 sal EMPLOYEES.SALARY%TYPE;
 sal_raise NUMBER(3,3) := 0;
 sal_max JOBS.MAX_SALARY%TYPE;

See Also:

■ Oracle Database PL/SQL Language Reference for the syntax of the
WHILE LOOP statement

■ Oracle Database PL/SQL Language Reference for more information
about using the WHILE LOOP statement

Controlling Program Flow

Developing Stored Subprograms and Packages 7-29

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN
 eval_freq := 1;

 SELECT JOB_ID INTO j_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 SELECT SALARY INTO sal
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 SELECT MAX_SALARY INTO sal_max
 FROM JOBS
 WHERE JOB_ID = j_id;

 CASE j_id
 WHEN 'PU_CLERK' THEN sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN sal_raise := 0.06;
 WHEN 'HR_REP' THEN sal_raise := 0.05;
 WHEN 'PR_REP' THEN sal_raise := 0.05;
 WHEN 'MK_REP' THEN sal_raise := 0.04;
 ELSE NULL;
 END CASE;

 IF (sal_raise != 0) THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || sal || ' increases by ' ||
 ROUND((sal_raise * 100),0) ||
 '% each year, it will be:');

 LOOP
 sal := sal * (1 + sal_raise);
 EXIT WHEN sal > sal_max;
 DBMS_OUTPUT.PUT_LINE(ROUND(sal,2));
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Maximum salary for this job is ' || sal_max);
 END;
 END IF;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
END eval_frequency;

Using Records and Cursors

7-30 Oracle Database Express Edition 2 Day Developer's Guide

Using Records and Cursors
Topics:

■ About Records

■ Tutorial: Declaring a RECORD Type

■ Tutorial: Creating and Invoking a Subprogram with a Record Parameter

■ About Cursors

■ Using an Explicit Cursor to Retrieve Result Set Rows One at a Time

■ Tutorial: Using an Explicit Cursor to Retrieve Result Set Rows One at a Time

■ About Cursor Variables

■ Using a Cursor Variable to Retrieve Result Set Rows One at a Time

■ Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a Time

About Records
A record is a PL/SQL composite variable that can store data values of different types,
similar to a struct type in C, C++, or Java. The internal components of a record are
called fields. To access a record field, you use dot notation: record_name.field_name.

You can treat record fields like scalar variables. You can also pass entire records as
subprogram parameters (if neither the sending nor receiving subprogram is a
standalone stored subprogram).

Records are useful for holding data from table rows, or from certain columns of table
rows. Each record field corresponds to a table column.

There are three ways to create a record:

■ Declare a RECORD type, and then declare a variable of that type.

The syntax is:

TYPE record_name IS RECORD
 (field_name data_type [:= initial_value]
 [, field_name data_type [:= initial_value]]...);

variable_name record_name;

■ Declare a variable of the type table_name%ROWTYPE.

The fields of the record have the same names and data types as the columns of the
table.

See Also:

■ Oracle Database PL/SQL Language Reference for the syntax of the
LOOP statement

■ Oracle Database PL/SQL Language Reference for the syntax of the
EXIT statement

■ Oracle Database PL/SQL Language Reference for more information
about using the LOOP and EXIT statements

See Also: Oracle Database PL/SQL Language Reference for more
information about records

Using Records and Cursors

Developing Stored Subprograms and Packages 7-31

■ Declare a variable of the type cursor_name%ROWTYPE.

The fields of the record have the same names and data types as the columns of the
table in the FROM clause of the cursor SELECT statement.

Tutorial: Declaring a RECORD Type
This tutorial shows how to use the SQL Developer tool Edit to declare a RECORD type,
sal_info, whose fields can hold salary information for an employee—job ID,
minimum and maximum salary for that job ID, current salary, and suggested raise.

To declare RECORD type sal_info:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Packages.

A list of packages appears.

3. Right-click EMP_EVAL.

A list of choices appears.

4. Click Edit.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that created the
package:

CREATE OR REPLACE PACKAGE EMP_EVAL AS

PROCEDURE eval_department(dept_id IN NUMBER);
FUNCTION calculate_score(evaluation_id IN NUMBER
 , performance_id IN NUMBER)
 RETURN NUMBER;

END EMP_EVAL;

5. In the EMP_EVAL pane, immediately before END EMP_EVAL, add this code:

TYPE sal_info IS RECORD
 (j_id jobs.job_id%type
 , sal_min jobs.min_salary%type
 , sal_max jobs.max_salary%type
 , sal employees.salary%type
 , sal_raise NUMBER(3,3));

The title of the pane is in italic font, indicating that the changes have not been
saved to the database.

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about defining RECORD types and declaring records of that type

■ Oracle Database PL/SQL Language Reference for the syntax of a
RECORD type definition

■ Oracle Database PL/SQL Language Reference for more information
about the %ROWTYPE attribute

■ Oracle Database PL/SQL Language Reference for the syntax of the
%ROWTYPE attribute

Using Records and Cursors

7-32 Oracle Database Express Edition 2 Day Developer's Guide

6. Click the icon Compile.

The changed package specification compiles and is saved to the database. The title
of the EMP_EVAL pane is no longer in italic font.

Now you can declare records of the type sal_info, as in "Tutorial: Creating and
Invoking a Subprogram with a Record Parameter" on page 7-32.

Tutorial: Creating and Invoking a Subprogram with a Record Parameter
If you declared the RECORD type sal_info in "Tutorial: Declaring a RECORD Type" on
page 7-31, this tutorial shows how to use the SQL Developer tool Edit to do the
following:

■ Create a procedure, salary_schedule, which has a parameter of type sal_info.

■ Change the eval_frequency function so that it declares a record, emp_sal, of the
type sal_info, populates its fields, and passes it to the salary_schedule
procedure.

Because eval_frequency will invoke salary_schedule, the declaration of salary_
schedule must precede the declaration of eval_frequency (otherwise, the package
will not compile). However, the definition of salary_schedule can be anywhere in the
package body.

To create salary_schedule and change eval_frequency:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Packages.

A list of packages appears.

3. Expand EMP_EVAL.

A list appears.

4. Right-click EMP_EVAL Body.

A list of choices appears.

5. Click Edit.

The EMP_EVAL Body pane appears, showing the code for the package body.

6. In the EMP_EVAL Body pane, immediately before END EMP_EVAL, add this definition
of the salary_schedule procedure:

PROCEDURE salary_schedule (emp IN sal_info) AS
 accumulating_sal NUMBER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('If salary ' || emp.sal ||
 ' increases by ' || ROUND((emp.sal_raise * 100),0) ||
 '% each year, it will be:');

 accumulating_sal := emp.sal;

 WHILE accumulating_sal <= emp.sal_max LOOP
 accumulating_sal := accumulating_sal * (1 + emp.sal_raise);
 DBMS_OUTPUT.PUT_LINE(ROUND(accumulating_sal,2) ||', ');
 END LOOP;
END salary_schedule;

Using Records and Cursors

Developing Stored Subprograms and Packages 7-33

The title of the pane is in italic font, indicating that the changes have not been
saved to the database.

7. In the EMP_EVAL Body pane, enter the code shown in bold font, in this position:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

FUNCTION eval_frequency (emp_id EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER;
PROCEDURE salary_schedule(emp IN sal_info);
PROCEDURE add_eval(employee_id IN employees.employee_id%type, today IN DATE);

PROCEDURE eval_department (dept_id IN NUMBER) AS

8. Edit the eval_frequency function, making the changes shown in bold font:

FUNCTION eval_frequency (emp_id EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER
AS
 h_date EMPLOYEES.HIRE_DATE%TYPE;
 today EMPLOYEES.HIRE_DATE%TYPE;
 eval_freq PLS_INTEGER;
 emp_sal SAL_INFO; -- replaces sal, sal_raise, and sal_max

BEGIN
 SELECT SYSDATE INTO today FROM DUAL;

 SELECT HIRE_DATE INTO h_date
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 IF ((h_date + (INTERVAL '120' MONTH)) < today) THEN
 eval_freq := 1;

 /* populate emp_sal */

 SELECT JOB_ID INTO emp_sal.j_id FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 SELECT MIN_SALARY INTO emp_sal.sal_min FROM JOBS
 WHERE JOB_ID = emp_sal.j_id;

 SELECT MAX_SALARY INTO emp_sal.sal_max FROM JOBS
 WHERE JOB_ID = emp_sal.j_id;

 SELECT SALARY INTO emp_sal.sal FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 emp_sal.sal_raise := 0; -- default

 CASE emp_sal.j_id
 WHEN 'PU_CLERK' THEN emp_sal.sal_raise := 0.08;
 WHEN 'SH_CLERK' THEN emp_sal.sal_raise := 0.07;
 WHEN 'ST_CLERK' THEN emp_sal.sal_raise := 0.06;
 WHEN 'HR_REP' THEN emp_sal.sal_raise := 0.05;
 WHEN 'PR_REP' THEN emp_sal.sal_raise := 0.05;
 WHEN 'MK_REP' THEN emp_sal.sal_raise := 0.04;
 ELSE NULL;
 END CASE;

Using Records and Cursors

7-34 Oracle Database Express Edition 2 Day Developer's Guide

 IF (emp_sal.sal_raise != 0) THEN
 salary_schedule(emp_sal);
 END IF;
 ELSE
 eval_freq := 2;
 END IF;

 RETURN eval_freq;
 END eval_frequency;

9. Click Compile.

About Cursors
When Oracle Database XE executes a SQL statement, it stores the result set and
processing information in an unnamed private SQL area. A pointer to this unnamed
area, called a cursor, lets you retrieve the rows of the result set one at a time. Cursor
attributes return information about the state of the cursor.

Every time you run either a SQL DML statement or a PL/SQL SELECT INTO statement,
PL/SQL opens an implicit cursor. You can get information about this cursor from its
attributes, but you cannot control it. After the statement runs, the database closes the
cursor; however, its attribute values remain available until another DML or SELECT
INTO statement runs.

PL/SQL also lets you declare explicit cursors. An explicit cursor has a name and is
associated with a query (SQL SELECT statement)—usually one that returns multiple
rows. After declaring an explicit cursor, you must open it (with the OPEN statement),
fetch rows one at a time from the result set (with the FETCH statement), and close the
cursor (with the CLOSE statement). After closing the cursor, you can neither fetch
records from the result set nor see the cursor attribute values.

The syntax for the value of an implicit cursor attribute is SQLattribute (for example,
SQL%FOUND). SQLattribute always refers to the most recently run DML or SELECT INTO
statement.

The syntax for the value of an explicit cursor attribute is cursor_name immediately
followed by attribute (for example, c1%FOUND).

Table 7–1 lists the cursor attributes and the values that they can return. (Implicit
cursors have additional attributes that are beyond the scope of this book.)

Table 7–1 Cursor Attribute Values

Attribute Values for Explicit Cursor Values for Implicit Cursor

%FOUND If cursor is not open, INVALID_CURSOR.

If cursor is open but no fetch was
attempted, NULL.

If the most recent fetch returned a
row, TRUE.

If the most recent fetch did not return
a row, FALSE.

If no DML or SELECT INTO statement
has run, NULL.

If the most recent DML or SELECT
INTO statement returned a row, TRUE.

If the most recent DML or SELECT
INTO statement did not return a row,
FALSE.

Using Records and Cursors

Developing Stored Subprograms and Packages 7-35

Using an Explicit Cursor to Retrieve Result Set Rows One at a Time
The following procedure uses each necessary statement in its simplest form, but
provides references to its complete syntax.

To use an explicit cursor to retrieve result set rows one at a time:
1. In the declarative part:

a. Declare the cursor:

CURSOR cursor_name IS query;

For complete explicit cursor declaration syntax, see Oracle Database PL/SQL
Language Reference.

b. Declare a record to hold the row returned by the cursor:

record_name cursor_name%ROWTYPE;

For complete %ROWTYPE syntax, see Oracle Database PL/SQL Language Reference.

2. In the executable part:

a. Open the cursor:

OPEN cursor_name;

For complete OPEN statement syntax, see Oracle Database PL/SQL Language
Reference.

%NOTFOUND If cursor is not open, INVALID_CURSOR.

If cursor is open but no fetch was
attempted, NULL.

If the most recent fetch returned a
row, FALSE.

If the most recent fetch did not return
a row, TRUE.

If no DML or SELECT INTO statement
has run, NULL.

If the most recent DML or SELECT
INTO statement returned a row, FALSE.

If the most recent DML or SELECT
INTO statement did not return a row,
TRUE.

%ROWCOUNT If cursor is not open, INVALID_CURSOR;
otherwise, a number greater than or
equal to zero.

NULL if no DML or SELECT INTO
statement has run; otherwise, a
number greater than or equal to zero.

%ISOPEN If cursor is open, TRUE; if not, FALSE. Always FALSE.

See Also:

■ "About Queries" on page 4-1

■ "About Data Manipulation Language (DML) Statements" on
page 5-1

■ Oracle Database PL/SQL Language Reference for more information
about the SELECT INTO statement

■ Oracle Database Advanced Application Developer's Guide for more
information about using cursors in applications

■ Oracle Database PL/SQL Language Reference for more information
about managing cursors in PL/SQL

Table 7–1 (Cont.) Cursor Attribute Values

Attribute Values for Explicit Cursor Values for Implicit Cursor

Using Records and Cursors

7-36 Oracle Database Express Edition 2 Day Developer's Guide

b. Fetch rows from the cursor (rows from the result set) one at a time, using a
LOOP statement that has syntax similar to this:

LOOP
 FETCH cursor_name INTO record_name;
 EXIT WHEN cursor_name%NOTFOUND;
 -- Process row that is in record_name:
 statement;
 [statement;]...
END LOOP;

For complete FETCH statement syntax, see Oracle Database PL/SQL Language
Reference.

c. Close the cursor:

CLOSE cursor_name;

For complete CLOSE statement syntax, see Oracle Database PL/SQL Language
Reference.

Tutorial: Using an Explicit Cursor to Retrieve Result Set Rows One at a Time
This tutorial shows how to implement the procedure EMP_EVAL.eval_department,
which uses an explicit cursor, emp_cursor.

To implement the EMP_EVAL.eval_department procedure:
1. In the EMP_EVAL package specification, change the declaration of the eval_

department procedure as shown in bold font:

PROCEDURE eval_department(dept_id IN employees.department_id%TYPE);

2. In the EMP_EVAL package body, change the definition of the eval_department
procedure as shown in bold font:

PROCEDURE eval_department (dept_id IN employees.department_id%TYPE)
AS
 CURSOR emp_cursor IS
 SELECT * FROM EMPLOYEES
 WHERE DEPARTMENT_ID = dept_id;

 emp_record EMPLOYEES%ROWTYPE; -- for row returned by cursor
 all_evals BOOLEAN; -- true if all employees in dept need evaluations
 today DATE;

BEGIN
 today := SYSDATE;

 IF (EXTRACT(MONTH FROM today) < 6) THEN
 all_evals := FALSE; -- only new employees need evaluations
 ELSE
 all_evals := TRUE; -- all employees need evaluations
 END IF;

 OPEN emp_cursor;

 DBMS_OUTPUT.PUT_LINE (
 'Determining evaluations necessary in department # ' ||
 dept_id);

 LOOP

Using Records and Cursors

Developing Stored Subprograms and Packages 7-37

 FETCH emp_cursor INTO emp_record;
 EXIT WHEN emp_cursor%NOTFOUND;

 IF all_evals THEN
 add_eval(emp_record.employee_id, today);
 ELSIF (eval_frequency(emp_record.employee_id) = 2) THEN
 add_eval(emp_record.employee_id, today);
 END IF;
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Processed ' || emp_cursor%ROWCOUNT || ' records.');

 CLOSE emp_cursor;
END eval_department;

(For a step-by-step example of changing a package body, see "Tutorial: Declaring
Variables and Constants in a Subprogram" on page 7-16.)

3. Compile the EMP_EVAL package specification.

4. Compile the EMP_EVAL package body.

About Cursor Variables
A cursor variable is like a cursor (see "About Cursors" on page 7-34), except that it is
not limited to one query. You can open a cursor variable for a query, process the result
set, and then use the cursor variable for another query. Cursor variables are useful for
passing query results between subprograms.

To declare a cursor variable, you declare a REF CURSOR type, and then declare a
variable of that type (therefore, a cursor variable is often called a REF CURSOR). A REF
CURSOR type can be either strong or weak.

A strong REF CURSOR type specifies a return type, which is the RECORD type of its cursor
variables. The PL/SQL compiler does not allow you to use these strongly typed
cursor variables for queries that return rows that are not of the return type. Strong REF
CURSOR types are less error-prone than weak ones, but weak ones are more flexible.

A weak REF CURSOR type does not specify a return type. The PL/SQL compiler accepts
weakly typed cursor variables in any queries. Weak REF CURSOR types are
interchangeable; therefore, instead of creating weak REF CURSOR types, you can use the
predefined type weak cursor type SYS_REFCURSOR.

After declaring a cursor variable, you must open it for a specific query (with the OPEN
FOR statement), fetch rows one at a time from the result set (with the FETCH statement),
and then either close the cursor (with the CLOSE statement) or open it for another
specific query (with the OPEN FOR statement). Opening the cursor variable for another
query closes it for the previous query. After closing a cursor variable for a specific
query, you can neither fetch records from the result set of that query nor see the cursor
attribute values for that query.

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about using cursor variables

■ Oracle Database PL/SQL Language Reference for the syntax of cursor
variable declaration

Using Records and Cursors

7-38 Oracle Database Express Edition 2 Day Developer's Guide

Using a Cursor Variable to Retrieve Result Set Rows One at a Time
The following procedure uses each of the necessary statements in its simplest form,
but provides references to their complete syntax.

To use a cursor variable to retrieve result set rows one at a time:
1. In the declarative part:

a. Declare the REF CURSOR type:

TYPE cursor_type IS REF CURSOR [RETURN return_type];

For complete REF CURSOR type declaration syntax, see Oracle Database PL/SQL
Language Reference.

b. Declare a cursor variable of that type:

cursor_variable cursor_type;

For complete cursor variable declaration syntax, see Oracle Database PL/SQL
Language Reference.

c. Declare a record to hold the row returned by the cursor:

record_name return_type;

For complete information about record declaration syntax, see Oracle Database
PL/SQL Language Reference.

2. In the executable part:

a. Open the cursor variable for a specific query:

OPEN cursor_variable FOR query;

For complete information about OPEN FOR statement syntax, see Oracle Database
PL/SQL Language Reference.

b. Fetch rows from the cursor variable (rows from the result set) one at a time,
using a LOOP statement that has syntax similar to this:

LOOP
 FETCH cursor_variable INTO record_name;
 EXIT WHEN cursor_variable%NOTFOUND;
 -- Process row that is in record_name:
 statement;
 [statement;]...
END LOOP;

For complete information about FETCH statement syntax, see Oracle Database
PL/SQL Language Reference.

c. Close the cursor variable:

CLOSE cursor_variable;

Alternatively, you can open the cursor variable for another query, which
closes it for the current query.

For complete information about CLOSE statement syntax, see Oracle Database
PL/SQL Language Reference.

Using Records and Cursors

Developing Stored Subprograms and Packages 7-39

Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a Time
This tutorial shows how to change the EMP_EVAL.eval_department procedure so that it
uses a cursor variable instead of an explicit cursor, which lets it process multiple
departments. The change includes adding a procedure that uses the cursor variable.

This tutorial also shows how to make EMP_EVAL.eval_department and EMP_EVAL.add_
eval more efficient: Instead of passing one field of a record to add_eval and having
add_eval use three queries to extract three other fields of the same record, eval_
department passes the entire record to add_eval, and add_eval uses dot notation to
access the values of the other three fields.

To change the EMP_EVAL.eval_department procedure to use a cursor variable:
1. In the EMP_EVAL package specification, add the procedure declaration and the REF

CURSOR type definition, as shown in bold font:

create or replace
PACKAGE emp_eval AS

 PROCEDURE eval_department (dept_id IN employees.department_id%TYPE);

 PROCEDURE eval_everyone;

 FUNCTION calculate_score(eval_id IN scores.evaluation_id%TYPE
 , perf_id IN scores.performance_id%TYPE)
 RETURN NUMBER;
 TYPE SAL_INFO IS RECORD
 (j_id jobs.job_id%type
 , sal_min jobs.min_salary%type
 , sal_max jobs.max_salary%type
 , salary employees.salary%type
 , sal_raise NUMBER(3,3));

 TYPE emp_refcursor_type IS REF CURSOR RETURN employees%ROWTYPE;
END emp_eval;

2. In the EMP_EVAL package body, add a forward declaration for the procedure eval_
loop_control and change the declaration of the procedure add_eval, as shown in
bold font:

create or replace
PACKAGE BODY EMP_EVAL AS

 FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
 RETURN PLS_INTEGER;

 PROCEDURE salary_schedule(emp IN sal_info);

 PROCEDURE add_eval(emp_record IN EMPLOYEES%ROWTYPE, today IN DATE);

 PROCEDURE eval_loop_control(emp_cursor IN emp_refcursor_type);
...
(For a step-by-step example of changing a package body, see "Tutorial: Declaring
Variables and Constants in a Subprogram" on page 7-16.)

3. Change the eval_department procedure to retrieve three separate result sets based
on the department, and to invoke the eval_loop_control procedure, as shown in
bold font:

PROCEDURE eval_department(dept_id IN employees.department_id%TYPE) AS

Using Records and Cursors

7-40 Oracle Database Express Edition 2 Day Developer's Guide

 emp_cursor emp_refcursor_type;
 current_dept departments.department_id%TYPE;

BEGIN
 current_dept := dept_id;

 FOR loop_c IN 1..3 LOOP
 OPEN emp_cursor FOR
 SELECT *
 FROM employees
 WHERE current_dept = dept_id;

 DBMS_OUTPUT.PUT_LINE
 ('Determining necessary evaluations in department #' ||
 current_dept);

 eval_loop_control(emp_cursor);

 DBMS_OUTPUT.PUT_LINE
 ('Processed ' || emp_cursor%ROWCOUNT || ' records.');

 CLOSE emp_cursor;
 current_dept := current_dept + 10;
 END LOOP;
END eval_department;

4. Change the add_eval procedure as shown in bold font:

PROCEDURE add_eval(emp_record IN employees%ROWTYPE, today IN DATE)
AS
-- (Delete local variables)
BEGIN
 INSERT INTO EVALUATIONS (
 evaluation_id,
 employee_id,
 evaluation_date,
 job_id,
 manager_id,
 department_id,
 total_score
)
 VALUES (
 evaluations_seq.NEXTVAL, -- evaluation_id
 emp_record.employee_id, -- employee_id
 today, -- evaluation_date
 emp_record.job_id, -- job_id
 emp_record.manager_id, -- manager_id
 emp_record.department_id, -- department_id
 0 -- total_score
);
END add_eval;

5. Before END EMP_EVAL, add the following procedure, which fetches the individual
records from the result set and processes them:

PROCEDURE eval_loop_control (emp_cursor IN emp_refcursor_type) AS
 emp_record EMPLOYEES%ROWTYPE;
 all_evals BOOLEAN;
 today DATE;
BEGIN
 today := SYSDATE;

Using Associative Arrays

Developing Stored Subprograms and Packages 7-41

 IF (EXTRACT(MONTH FROM today) < 6) THEN
 all_evals := FALSE;
 ELSE
 all_evals := TRUE;
 END IF;

 LOOP
 FETCH emp_cursor INTO emp_record;
 EXIT WHEN emp_cursor%NOTFOUND;

 IF all_evals THEN
 add_eval(emp_record, today);
 ELSIF (eval_frequency(emp_record.employee_id) = 2) THEN
 add_eval(emp_record, today);
 END IF;
 END LOOP;
END eval_loop_control;

6. Before END EMP_EVAL, add the following procedure, which retrieves a result set that
contains all employees in the company:

PROCEDURE eval_everyone AS
 emp_cursor emp_refcursor_type;
BEGIN
 OPEN emp_cursor FOR SELECT * FROM employees;
 DBMS_OUTPUT.PUT_LINE('Determining number of necessary evaluations.');
 eval_loop_control(emp_cursor);
 DBMS_OUTPUT.PUT_LINE('Processed ' || emp_cursor%ROWCOUNT || ' records.');
 CLOSE emp_cursor;
END eval_everyone;

7. Compile the EMP_EVAL package specification.

8. Compile the EMP_EVAL package body.

Using Associative Arrays
An associative array is a type of collection.

Topics:

■ About Collections

■ About Associative Arrays

■ Declaring Associative Arrays

■ Populating Associative Arrays

■ Traversing Dense Associative Arrays

■ Traversing Sparse Associative Arrays

See Also: For more information about collections:

■ Oracle Database Concepts

■ Oracle Database PL/SQL Language Reference

Using Associative Arrays

7-42 Oracle Database Express Edition 2 Day Developer's Guide

About Collections
A collection is a PL/SQL composite variable that stores elements of the same type in a
specified order, similar to a one-dimensional array. The internal components of a
collection are called elements. Each element has a unique subscript that identifies its
position in the collection. To access a collection element, you use subscript notation:
collection_name(element_subscript).

You can treat collection elements like scalar variables. You can also pass entire
collections as subprogram parameters (if neither the sending nor receiving
subprogram is a standalone stored subprogram).

A collection method is a built-in PL/SQL subprogram that either returns information
about a collection or operates on a collection. To invoke a collection method, you use
dot notation: collection_name.method_name. For example, collection_name.COUNT
returns the number of elements in the collection.

PL/SQL has three types of collections:

■ Associative arrays (formerly called "PL/SQL tables" or "index-by tables")

■ Nested tables

■ Variable arrays (varrays)

This document explains only associative arrays.

About Associative Arrays
An associative array is an unbounded set of key-value pairs. Each key is unique, and
serves as the subscript of the element that holds the corresponding value. Therefore,
you can access elements without knowing their positions in the array, and without
traversing the array.

The data type of the key can be either PLS_INTEGER or VARCHAR2 (length).

If the data type of the key is PLS_INTEGER, and the associative array is indexed by
integer, and it is dense (that is, it has no gaps between elements), then every element
between the first and last element is defined and has a value (which can be NULL).

If the key type is VARCHAR2 (length), the associative array is indexed by string (of
length characters), and it is sparse; that is, it might have gaps between elements.

When traversing a dense associative array, you do not need to beware of gaps between
elements; when traversing a sparse associative array, you do.

To assign a value to an associative array element, you can use an assignment operator:

array_name(key) := value

If key is not in the array, the assignment statement adds the key-value pair to the
array. Otherwise, the statement changes the value of array_name(key) to value.

Associative arrays are useful for storing data temporarily. They do not use the disk
space or network operations that tables require. However, because associative arrays

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about PL/SQL collection types

■ Oracle Database PL/SQL Language Reference for more information
about collection methods

Using Associative Arrays

Developing Stored Subprograms and Packages 7-43

are intended for temporary storage, you cannot manipulate them with DML
statements or use SELECT INTO statements to assign their values to variables.

If you declare an associative array in a package, and assign values to the variable in
the package body, then the associative array exists for the life of the database session.
Otherwise, it exists for the life of the subprogram in which you declare it.

Declaring Associative Arrays
To declare an associative array, you declare an associative array type, and then declare
a variable of that type. The simplest syntax is:

TYPE array_type IS TABLE OF element_type INDEX BY key_type;

array_name array_type;

An efficient way to declare an associative array is with a cursor, using the following
procedure. The procedure uses each necessary statement in its simplest form, but
provides references to its complete syntax.

To use a cursor to declare an associative array:
1. In the declarative part:

a. Declare the cursor:

CURSOR cursor_name IS query;

For complete explicit cursor declaration syntax, see Oracle Database PL/SQL
Language Reference.

b. Declare the associative array type:

TYPE array_type IS TABLE OF cursor_name%ROWTYPE
 INDEX BY { PLS_INTEGER | VARCHAR2 length }

For complete associative array type declaration syntax, see Oracle Database
PL/SQL Language Reference.

c. Declare an associative array variable of that type:

array_name array_type;

For complete variable declaration syntax, see Oracle Database PL/SQL Language
Reference.

Example 7–9 uses the preceding procedure to declare two associative arrays,
employees_jobs and jobs_, and then declares a third associative array, job_titles_
type, without using a cursor. The first two arrays are indexed by integer; the third is
indexed by string.

Example 7–9 Declaring Associative Arrays

DECLARE

See Also: Oracle Database PL/SQL Language Reference for more
information about associative arrays

Note: The ORDER BY clause in the declaration of employees_jobs_
cursor determines the storage order of the elements of the associative
array employee_jobs.

Using Associative Arrays

7-44 Oracle Database Express Edition 2 Day Developer's Guide

 -- Declare cursor:

 CURSOR employees_jobs_cursor IS
 SELECT FIRST_NAME, LAST_NAME, JOB_ID
 FROM EMPLOYEES
 ORDER BY JOB_ID, LAST_NAME, FIRST_NAME;

 -- Declare associative array type:

 TYPE employees_jobs_type IS TABLE OF employees_jobs_cursor%ROWTYPE
 INDEX BY PLS_INTEGER;

 -- Declare associative array:

 employees_jobs employees_jobs_type;

 -- Use same procedure to declare another associative array:

 CURSOR jobs_cursor IS
 SELECT JOB_ID, JOB_TITLE
 FROM JOBS;

 TYPE jobs_type IS TABLE OF jobs_cursor%ROWTYPE
 INDEX BY PLS_INTEGER;

 jobs_ jobs_type;

-- Declare associative array without using cursor:

 TYPE job_titles_type IS TABLE OF JOBS.JOB_TITLE%TYPE
 INDEX BY JOBS.JOB_ID%TYPE; -- jobs.job_id%type is varchar2(10)

 job_titles job_titles_type;

BEGIN
 NULL;
END;
/

Populating Associative Arrays
The most efficient way to populate a dense associative array is with a cursor and the
FETCH statement with the BULK COLLECT INTO clause, using the following procedure.
The procedure uses each necessary statement in its simplest form, but provides
references to its complete syntax.

You cannot use the following procedure to populate a sparse associative array.
Instead, you must use an assignment statement inside a loop statement. For
information about loop statements, see "Controlling Program Flow" on page 7-22.

To use a cursor to populate an associative array indexed by integer:
1. If you have not done so, declare an associative array with a cursor, using the

procedure in "Declaring Associative Arrays" on page 7-43.

See Also:

■ "About Cursors" on page 7-34

■ Oracle Database PL/SQL Language Reference for associative array
declaration syntax

Using Associative Arrays

Developing Stored Subprograms and Packages 7-45

2. In the executable part of the PL/SQL unit in which you declared the associative
array:

a. Open the cursor:

OPEN cursor_name;

For complete OPEN statement syntax, see Oracle Database PL/SQL Language
Reference.

b. Fetch all rows from the cursor into the associative array variable at once, using
a FETCH statement with the BULK COLLECT INTO clause:

FETCH cursor_name BULK COLLECT INTO aa_variable;

For complete FETCH statement syntax, see Oracle Database PL/SQL Language
Reference.

c. Close the cursor:

CLOSE cursor_name;

For complete CLOSE statement syntax, see Oracle Database PL/SQL Language
Reference.

Example 7–10 uses the preceding procedure to populate the associative arrays
employees_jobs and jobs_, which are indexed by integer. Then it uses an assignment
statement inside a FOR LOOP statement to populate the associative array job_titles_
type, which is indexed by string.

FOR LOOP

Example 7–10 Populating Associative Arrays

-- Declarative part from Example 7–9 goes here.
BEGIN
 -- Populate associative arrays indexed by integer:

 OPEN employees_jobs_cursor;
 FETCH employees_jobs_cursor BULK COLLECT INTO employees_jobs;
 CLOSE employees_jobs_cursor;

 OPEN jobs_cursor;
 FETCH jobs_cursor BULK COLLECT INTO jobs_;
 CLOSE jobs_cursor;

 -- Populate associative array indexed by string:

 FOR i IN 1..jobs_.COUNT() LOOP
 job_titles(jobs_(i).job_id) := jobs_(i).job_title;
 END LOOP;
END;
/

Traversing Dense Associative Arrays
A dense associative array (indexed by integer) has no gaps between elements—every
element between the first and last element is defined and has a value (which can be
NULL). You can traverse a dense array with a FOR LOOP statement, as in Example 7–11.

See Also: "About Cursors" on page 7-34

Using Associative Arrays

7-46 Oracle Database Express Edition 2 Day Developer's Guide

When inserted in the executable part of Example 7–10, after the code that populates
the employees_jobs array, the FOR LOOP statement in Example 7–11 prints the elements
of the employees_jobs array in the order in which they were stored. Their storage
order was determined by the ORDER BY clause in the declaration of employees_jobs_
cursor, which was used to declare employees_jobs (see Example 7–9).

FOR LOOP

FOR LOOP

The upper bound of the FOR LOOP statement, employees_jobs. COUNT, invokes a
collection method that returns the number of elements in the array. For more
information about COUNT, see Oracle Database PL/SQL Language Reference.

Example 7–11 Traversing a Dense Associative Array

-- Code that populates employees_jobs must precede this code:

FOR i IN 1..employees_jobs.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(
 RPAD(employees_jobs(i).first_name, 23) ||
 RPAD(employees_jobs(i).last_name, 28) ||
 employees_jobs(i).job_id);
 END LOOP;

Result:

William Gietz AC_ACCOUNT
Shelley Higgins AC_MGR
Jennifer Whalen AD_ASST
Steven King AD_PRES
Lex De Haan AD_VP
Neena Kochhar AD_VP
John Chen FI_ACCOUNT
...
Jose Manuel Urman FI_ACCOUNT
Nancy Greenberg FI_MGR
Susan Mavris HR_REP
David Austin IT_PROG
...
Valli Pataballa IT_PROG
Michael Hartstein MK_MAN
Pat Fay MK_REP
Hermann Baer PR_REP
Shelli Baida PU_CLERK
...
Sigal Tobias PU_CLERK
Den Raphaely PU_MAN
Gerald Cambrault SA_MAN
...
Eleni Zlotkey SA_MAN
Ellen Abel SA_REP
...
Clara Vishney SA_REP
Sarah Bell SH_CLERK
...
Peter Vargas ST_CLERK
Adam Fripp ST_MAN
...
Matthew Weiss ST_MAN

Using Associative Arrays

Developing Stored Subprograms and Packages 7-47

Traversing Sparse Associative Arrays
A sparse associative array (indexed by string) might have gaps between elements.
You can traverse it with a WHILE LOOP statement, as in Example 7–12.

To run the code in Example 7–12, which prints the elements of the job_titles array:

1. At the end of the declarative part of Example 7–9, insert this variable declaration:

i jobs_.job_id%TYPE;

2. In the executable part of Example 7–10, after the code that populates the job_
titles array, insert the code from Example 7–12.

Example 7–12 includes two collection method invocations, job_titles.FIRST and
job_titles.NEXT(i). job_titles.FIRST returns the first element of job_titles, and
job_titles.NEXT(i) returns the subscript that succeeds i. For more information about
FIRST, see Oracle Database PL/SQL Language Reference. For more information about
NEXT, see Oracle Database PL/SQL Language Reference.

WHILE LOOP

Example 7–12 Traversing a Sparse Associative Array

/* Declare this variable in declarative part:

 i jobs_.job_id%TYPE;

 Add this code to the executable part,
 after code that populates job_titles:
*/

i := job_titles.FIRST;

WHILE i IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(i, 12) || job_titles(i));
 i := job_titles.NEXT(i);
END LOOP;

Result:

AC_ACCOUNT Public Accountant
AC_MGR Accounting Manager
AD_ASST Administration Assistant
AD_PRES President
AD_VP Administration Vice President
FI_ACCOUNT Accountant
FI_MGR Finance Manager
HR_REP Human Resources Representative
IT_PROG Programmer
MK_MAN Marketing Manager
MK_REP Marketing Representative
PR_REP Public Relations Representative
PU_CLERK Purchasing Clerk
PU_MAN Purchasing Manager
SA_MAN Sales Manager
SA_REP Sales Representative
SH_CLERK Shipping Clerk
ST_CLERK Stock Clerk
ST_MAN Stock Manager

Handling Exceptions (Run-Time Errors)

7-48 Oracle Database Express Edition 2 Day Developer's Guide

Handling Exceptions (Run-Time Errors)
Topics:

■ About Exceptions and Exception Handlers

■ Handling Predefined Exceptions

■ Declaring and Handling User-Defined Exceptions

About Exceptions and Exception Handlers
When a run-time error occurs in PL/SQL code, an exception is raised. If the
subprogram (or block) in which the exception is raised has an exception-handling part,
control transfers to it; otherwise, execution stops.

Run-time errors can arise from design faults, coding mistakes, hardware failures, and
many other sources. Because you cannot anticipate all possible errors, Oracle
recommends including exception-handling parts in your subprograms ("About
Subprogram Structure" on page 7-5 shows where to put the exception-handling part).

Oracle Database XE has many predefined exceptions, which it raises automatically
when a program violates database rules or exceeds system-dependent limits. For
example, if a SELECT INTO statement returns no rows, Oracle Database XE raises the
predefined exception NO_DATA_FOUND. For a summary of predefined PL/SQL
exceptions, see Oracle Database PL/SQL Language Reference.

PL/SQL lets you define (declare) your own exceptions. An exception declaration has
this syntax:

exception_name EXCEPTION;

Unlike a predefined exception, a user-defined exception must be raised explicitly,
using either the RAISE statement or the DBMS_STANDARD.RAISE_APPLICATION_ERROR
procedure. For example:

IF condition THEN RAISE exception_name;

For information about the DBMS_STANDARD.RAISE_APPLICATION_ERROR procedure, see
Oracle Database PL/SQL Language Reference.

The exception-handling part of a subprogram contains one or more exception
handlers. An exception handler has this syntax:

WHEN { exception_name [OR exception_name]... | OTHERS } THEN
 statement; [statement;]...

A WHEN OTHERS exception handler handles unexpected run-time errors. If used, it must
be last. For example:

EXCEPTION
 WHEN exception_1 THEN
 statement; [statement;]...
 WHEN exception_2 OR exception_3 THEN
 statement; [statement;]...
 WHEN OTHERS THEN
 statement; [statement;]...
END;

See Also: Oracle Database PL/SQL Language Reference for more
information about handling PL/SQL errors

Handling Exceptions (Run-Time Errors)

Developing Stored Subprograms and Packages 7-49

An alternative to the WHEN OTHERS exception handler is the EXCEPTION_INIT pragma,
which associates a user-defined exception name with an Oracle Database error
number.

Handling Predefined Exceptions
Example 7–13 shows, in bold font, how to change the EMP_EVAL.eval_department
procedure to handle the predefined exception NO_DATA_FOUND. Make this change and
compile the changed procedure. (For an example of how to change a package body,
see "Tutorial: Declaring Variables and Constants in a Subprogram" on page 7-16.)

Example 7–13 Handling Predefined Exception NO_DATA_FOUND

PROCEDURE eval_department(dept_id IN employees.department_id%TYPE) AS
 emp_cursor emp_refcursor_type;
 current_dept departments.department_id%TYPE;

BEGIN
 current_dept := dept_id;

 FOR loop_c IN 1..3 LOOP
 OPEN emp_cursor FOR
 SELECT *
 FROM employees
 WHERE current_dept = dept_id;

 DBMS_OUTPUT.PUT_LINE
 ('Determining necessary evaluations in department #' ||
 current_dept);

 eval_loop_control(emp_cursor);

 DBMS_OUTPUT.PUT_LINE
 ('Processed ' || emp_cursor%ROWCOUNT || ' records.');

 CLOSE emp_cursor;
 current_dept := current_dept + 10;
 END LOOP;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('The query did not return a result set');
END eval_department;

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about exception declaration syntax

■ Oracle Database PL/SQL Language Reference for more information
about exception handler syntax

■ Oracle Database PL/SQL Language Reference for more information
about the EXCEPTION_INIT pragma

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about predefined exceptions

■ Oracle Database PL/SQL Language Reference for more information
about handling raised exceptions

Handling Exceptions (Run-Time Errors)

7-50 Oracle Database Express Edition 2 Day Developer's Guide

Declaring and Handling User-Defined Exceptions
Example 7–14 shows, in bold font, how to change the EMP_EVAL.calculate_score
function to declare and handle two user-defined exceptions, wrong_weight and wrong_
score. Make this change and compile the changed function. (For an example of how to
change a package body, see "Tutorial: Declaring Variables and Constants in a
Subprogram" on page 7-16.)

Example 7–14 Handling User-Defined Exceptions

FUNCTION calculate_score (evaluation_id IN scores.evaluation_id%TYPE
 , performance_id IN scores.performance_id%TYPE)
 RETURN NUMBER AS

 weight_wrong EXCEPTION;
 score_wrong EXCEPTION;
 n_score scores.score%TYPE;
 n_weight performance_parts.weight%TYPE;
 running_total NUMBER := 0;
 max_score CONSTANT scores.score%TYPE := 9;
 max_weight CONSTANT performance_parts.weight%TYPE:= 1;
BEGIN
 SELECT s.score INTO n_score
 FROM SCORES s
 WHERE evaluation_id = s.evaluation_id
 AND performance_id = s.performance_id;

 SELECT p.weight INTO n_weight
 FROM PERFORMANCE_PARTS p
 WHERE performance_id = p.performance_id;

 BEGIN
 IF (n_weight > max_weight) OR (n_weight < 0) THEN
 RAISE weight_wrong;
 END IF;
 END;

 BEGIN
 IF (n_score > max_score) OR (n_score < 0) THEN
 RAISE score_wrong;
 END IF;
 END;

 running_total := n_score * n_weight;
 RETURN running_total;

EXCEPTION
 WHEN weight_wrong THEN
 DBMS_OUTPUT.PUT_LINE(
 'The weight of a score must be between 0 and ' || max_weight);
 RETURN -1;
 WHEN score_wrong THEN
 DBMS_OUTPUT.PUT_LINE(
 'The score must be between 0 and ' || max_score);
 RETURN -1;
END calculate_score;

Handling Exceptions (Run-Time Errors)

Developing Stored Subprograms and Packages 7-51

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about user-defined exceptions

■ Oracle Database PL/SQL Language Reference for more information
about handling raised exceptions

Handling Exceptions (Run-Time Errors)

7-52 Oracle Database Express Edition 2 Day Developer's Guide

8

Using Triggers 8-1

8Using Triggers

This chapter contains the following topics:

■ About Triggers

■ Creating Triggers

■ Changing Triggers

■ Disabling and Enabling Triggers

■ About Trigger Compilation and Dependencies

■ Dropping Triggers

About Triggers
A trigger is a PL/SQL unit that is stored in the database and (if it is in the enabled
state) automatically executes ("fires") in response to a specified event.

A trigger has this structure:

TRIGGER trigger_name
 triggering_event
 [trigger_restriction]
BEGIN
 triggered_action;
END;

The trigger_name must be unique for triggers in the schema. A trigger can have the
same name as another kind of object in the schema (for example, a table); however,
Oracle recommends using a naming convention that avoids confusion.

If the trigger is in the enabled state, the triggering_event causes the database to
execute the triggered_action if the trigger_restriction is either TRUE or omitted.
The triggering_event is associated with either a table, a view, a schema, or the
database, and it is one of these:

■ DML statement (described in "About Data Manipulation Language (DML)
Statements" on page 5-1)

■ DDL statement (described in "About Data Definition Language (DDL) Statements"
on page 6-1)

■ Database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN)

If the trigger is in the disabled state, the triggering_event does not cause the
database to execute the triggered_action, even if the trigger_restriction is TRUE or
omitted.

Creating Triggers

8-2 Oracle Database Express Edition 2 Day Developer's Guide

By default, a trigger is created in the enabled state. You can disable an enabled trigger,
and enable a disabled trigger.

Unlike a subprogram, a trigger cannot be invoked directly. A trigger is invoked only
by its triggering event, which can be caused by any user or application. You might be
unaware that a trigger is executing unless it causes an error that is not handled
properly.

A simple trigger can fire at exactly one of these timing points:

■ Before the triggering event executes (statement-level BEFORE trigger)

■ After the triggering event executes (statement-level AFTER trigger)

■ Before each row that the event affects (row-level BEFORE trigger)

■ After each row that the event affects (row-level AFTER trigger)

A compound trigger can fire at multiple timing points. For information about
compound triggers, see Oracle Database PL/SQL Language Reference.

An INSTEAD OF trigger is defined on a view, and its triggering event is a DML
statement. Instead of executing the DML statement, Oracle Database executes the
INSTEAD OF trigger. For more information, see "Creating an INSTEAD OF Trigger" on
page 8-5.

A system trigger is defined on a schema or the database. A trigger defined on a
schema fires for each event associated with the owner of the schema (the current user).
A trigger defined on a database fires for each event associated with all users.

One use of triggers is to enforce business rules that apply to all client applications. For
example, suppose that data added to the EMPLOYEES table must have a certain format,
and that many client applications can add data to this table. A trigger on the table can
ensure the proper format of all data added to it. Because the trigger executes whenever
any client adds data to the table, no client can circumvent the rules, and the code that
enforces the rules can be stored and maintained only in the trigger, rather than in
every client application. For other uses of triggers, see Oracle Database PL/SQL
Language Reference.

Creating Triggers
To create triggers, use either the SQL Developer tool Create Trigger or the DDL
statement CREATE TRIGGER. This topic shows how to use both of these ways to create
triggers.

By default, a trigger is created in the enabled state. To create a trigger in disabled state,
use the CREATE TRIGGER statement with the DISABLE clause.

Topics:

■ About OLD and NEW Pseudorecords

■ Tutorial: Creating a Trigger that Logs Table Changes

See Also: Oracle Database PL/SQL Language Reference for complete
information about triggers

Note: To create triggers, you must have appropriate privileges;
however, for this discussion and simple application, you do not need
this additional information.

Creating Triggers

Using Triggers 8-3

■ Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is
Inserted

■ Creating an INSTEAD OF Trigger

■ Tutorial: Creating Triggers that Log LOGON and LOGOFF Events

About OLD and NEW Pseudorecords
When a row-level trigger fires, the PL/SQL run-time system creates and populates the
two pseudorecords OLD and NEW. They are called pseudorecords because they have
some, but not all, of the properties of records.

For the row that the trigger is processing:

■ For an INSERT trigger, OLD contains no values, and NEW contains the new values.

■ For an UPDATE trigger, OLD contains the old values, and NEW contains the new
values.

■ For a DELETE trigger, OLD contains the old values, and NEW contains no values.

To reference a pseudorecord, put a colon before its name—:OLD or :NEW—as in
Example 8–1.

Tutorial: Creating a Trigger that Logs Table Changes
This tutorial shows how to use the CREATE TRIGGER statement to create a trigger, EVAL_
CHANGE_TRIGGER, which adds a row to the table EVALUATIONS_LOG whenever an INSERT,
UPDATE, or DELETE statement changes the EVALUATIONS table.

The trigger adds the row after the triggering statement executes, and uses the
conditional predicates INSERTING, UPDATING, and DELETING to determine which of the
three possible DML statements fired the trigger.

EVAL_CHANGE_TRIGGER is a statement-level trigger and an AFTER trigger.

This trigger is part of the sample application that the tutorials and examples in this
document show how to develop and deploy.

To create EVALUATIONS_LOG and EVAL_CHANGE_TRIGGER:
1. Create the EVALUATIONS_LOG table:

CREATE TABLE EVALUATIONS_LOG (log_date DATE

Note: To do the tutorials in this document, you must be connected to
Oracle Database Express Edition (Oracle Database XE) as the user HR
from SQL Developer.

See Also:

■ Oracle Database SQL Developer User's Guide for information about
SQL Developer dialog boxes for creating objects

■ Oracle Database PL/SQL Language Reference for more information
about the CREATE TRIGGER statement

■ "Editing Installation Script Files that Create Triggers" on page 10-6

See Also: Oracle Database PL/SQL Language Reference for more
information about OLD and NEW pseudorecords

Creating Triggers

8-4 Oracle Database Express Edition 2 Day Developer's Guide

 , action VARCHAR2(50));

2. Create EVAL_CHANGE_TRIGGER:

CREATE OR REPLACE TRIGGER EVAL_CHANGE_TRIGGER
 AFTER INSERT OR UPDATE OR DELETE
 ON EVALUATIONS
DECLARE
 log_action EVALUATIONS_LOG.action%TYPE;
BEGIN
 IF INSERTING THEN
 log_action := 'Insert';
 ELSIF UPDATING THEN
 log_action := 'Update';
 ELSIF DELETING THEN
 log_action := 'Delete';
 ELSE
 DBMS_OUTPUT.PUT_LINE('This code is not reachable.');
 END IF;

 INSERT INTO EVALUATIONS_LOG (log_date, action)
 VALUES (SYSDATE, log_action);
END;

Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is Inserted
The sequence EVALUATIONS_SEQ generates primary keys for the EVALUATIONS table.
However, these primary keys are not inserted into the table automatically.

This tutorial shows how to use the SQL Developer Create Trigger tool to create a
trigger named NEW_EVALUATION_TRIGGER, which fires before a row is inserted into the
EVALUATIONS table, and generates the unique number for the primary key of that row,
using evaluations_seq. The trigger fires once for each row affected by the triggering
INSERT statement.

NEW_EVALUATION_TRIGGER is a row-level trigger and a BEFORE trigger.

This trigger is part of the sample application that the tutorials and examples in this
document show how to develop and deploy.

To create the NEW_EVALUATION trigger:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Right-click Triggers.

A list of choices appears.

3. Click New Trigger.

The Create Trigger window opens. The field Schema has the value HR and the field
Name has the default value TRIGGER1.

4. In the Name field, type NEW_EVALUATION_TRIGGER over the default value.

5. Click the tab Trigger.

The Trigger pane appears. By default, the field Trigger Type has the value TABLE,
the check box Enabled is selected, the field Table Owner has the value HR, the field
Table Name is empty, the options Before and Statement Level are selected, the
options After and Row Level are deselected, and the check boxes Insert, Update,
and Delete are deselected.

Creating Triggers

Using Triggers 8-5

6. In the field Table Name, from the menu, select EVALUATIONS.

7. Select the option Row Level.

The option Statement Level is now deselected.

8. Select the check box Insert.

9. Click OK.

The NEW_EVALUATION_TRIGGER pane opens, showing the CREATE TRIGGER statement
that created the trigger:

CREATE OR REPLACE
TRIGGER NEW_EVALUATION_TRIGGER
BEFORE INSERT ON EVALUATIONS
FOR EACH ROW
BEGIN
 NULL;
END;

The title of the NEW_EVALUATION_TRIGGER pane is in italic font, indicating that the
trigger is not yet saved in the database.

10. In the CREATE TRIGGER statement, replace NULL with this:

:NEW.evaluation_id := evaluations_seq.NEXTVAL

11. From the File menu, select Save.

Oracle Database XE compiles the procedure and saves it. The title of the NEW_
EVALUATION_TRIGGER pane is no longer in italic font.

Creating an INSTEAD OF Trigger
A view presents the output of a query as a table. If you want to change a view as you
would change a table, you must create INSTEAD OF triggers. Instead of changing the
view, they change the underlying tables.

For example, consider the view EMP_LOCATIONS, whose NAME column is created from
the LAST_NAME and FIRST_NAME columns of the EMPLOYEES table:

CREATE VIEW EMP_LOCATIONS AS
SELECT e.EMPLOYEE_ID,
 e.LAST_NAME || ', ' || e.FIRST_NAME NAME,
 d.DEPARTMENT_NAME DEPARTMENT,
 l.CITY CITY,
 c.COUNTRY_NAME COUNTRY
FROM EMPLOYEES e, DEPARTMENTS d, LOCATIONS l, COUNTRIES c
WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID AND
 d.LOCATION_ID = l.LOCATION_ID AND
 l.COUNTRY_ID = c.COUNTRY_ID
ORDER BY LAST_NAME;

To update EMP_LOCATIONS.NAME, you must update EMPLOYEES.LAST_NAME and
EMPLOYEES.FIRST_NAME. This is what the INSTEAD OF trigger in Example 8–1 does.

This trigger is part of the sample application that the tutorials and examples in this
document show how to develop and deploy.

NEW and OLD are pseudorecords that the PL/SQL run-time engine creates and
populates whenever a row-level trigger fires. OLD and NEW store the original and new
values, respectively, of the record being processed by the trigger. They are called
pseudorecords because they do not have all properties of PL/SQL records.

Changing Triggers

8-6 Oracle Database Express Edition 2 Day Developer's Guide

Example 8–1 Creating an INSTEAD OF Trigger

CREATE OR REPLACE TRIGGER update_name_view_trigger
INSTEAD OF UPDATE ON emp_locations
BEGIN
 UPDATE employees SET
 first_name = substr(:NEW.name, instr(:new.name, ',')+2),
 last_name = substr(:NEW.name, 1, instr(:new.name, ',')-1)
 WHERE employee_id = :OLD.employee_id;
END;

Tutorial: Creating Triggers that Log LOGON and LOGOFF Events
This tutorial shows how to use the CREATE TRIGGER statement to create two triggers,
hr_logon_trigger and hr_logoff_trigger. After someone logs on as user HR, hr_
logon_trigger adds a row to the table HR_USERS_LOG. Before someone logs off as user
HR, hr_logoff_trigger adds a row to the table HR_USERS_LOG.

hr_logon_trigger and hr_logoff_trigger are system triggers. hr_logon_trigger is
a BEFORE trigger, and hr_logoff_trigger is an AFTER trigger.

These triggers are not part of the sample application that the tutorials and examples in
this document show how to develop and deploy.

To create HR_USERS_LOG, HR_LOGON_TRIGGER, and HR_LOGOFF_
TRIGGER:
1. Create the HR_USERS_LOG table:

CREATE TABLE hr_users_log (
 user_name VARCHAR2(30),
 activity VARCHAR2(20),
 event_date DATE
);

2. Create hr_logon_trigger:

CREATE OR REPLACE TRIGGER hr_logon_trigger
 AFTER LOGON
 ON HR.SCHEMA
BEGIN
 INSERT INTO hr_users_log (user_name, activity, event_date)
 VALUES (USER, 'LOGON', SYSDATE);
END;

3. Create hr_logoff_trigger:

CREATE OR REPLACE TRIGGER hr_logoff_trigger
 BEFORE LOGOFF
 ON HR.SCHEMA
BEGIN
 INSERT INTO hr_users_log (user_name, activity, event_date)
 VALUES (USER, 'LOGOFF', SYSDATE);
END;

Changing Triggers
To change a trigger, use either the SQL Developer tool Edit or the DDL statement
CREATE TRIGGER with the OR REPLACE clause.

See Also: Oracle Database PL/SQL Language Reference

Disabling and Enabling Triggers

Using Triggers 8-7

To change a trigger using the Edit tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Triggers.

A list of triggers appears.

3. Click the trigger to change.

To the right of the Connections pane, a frame with appears. Its top tab has the
name of the trigger to change. Under the top tab are subtabs.

4. Click the subtab Code.

The Code pane appears, showing the code that created the trigger. The Code pane
is in write mode. (Clicking the pencil icon switches the mode from write mode to
read only, or the reverse.)

5. In the Code pane, change the code.

The title of the pane is in italic font, indicating that the change is not yet saved in
the database.

6. Select Save from the File menu.

Oracle Database XE compiles the trigger and saves it. The title of the pane is no
longer in italic font.

Disabling and Enabling Triggers
You might need to temporarily disable triggers if they reference objects that are
unavailable, or if you must upload a large amount of data without the delay that
triggers cause (as in a recovery operation). After the referenced objects become
available, or you have finished uploading the data, you can re-enable the triggers.

To disable or enable a single trigger, use the ALTER TRIGGER statement with the
DISABLE or ENABLE clause. For example:

ALTER TRIGGER eval_change_trigger DISABLE;
ALTER TRIGGER eval_change_trigger ENABLE;

To disable or enable all triggers on a particular table, use the ALTER TABLE statement
with the DISABLE ALL TRIGGERS or ENABLE ALL TRIGGERS clause. For example:

ALTER TABLE evaluations DISABLE ALL TRIGGERS;
ALTER TABLE evaluations ENABLE ALL TRIGGERS;

See Also:

■ "About Data Definition Language (DDL) Statements" on page 6-1
for general information that applies to the CREATE OR REPLACE
TRIGGER statement

■ Oracle Database PL/SQL Language Reference for more information
about the CREATE OR REPLACE TRIGGER statement

About Trigger Compilation and Dependencies

8-8 Oracle Database Express Edition 2 Day Developer's Guide

About Trigger Compilation and Dependencies
Running a CREATE TRIGGER statement compiles the trigger being created. If this
compilation causes an error, the CREATE TRIGGER statement fails. To see the
compilation errors, run this statement:

SELECT * FROM USER_ERRORS WHERE TYPE = 'TRIGGER';

Compiled triggers depend on the schema objects on which they are defined. For
example, NEW_EVALUATION_TRIGGER depends on the EVALUATIONS table:

CREATE OR REPLACE
TRIGGER NEW_EVALUATION_TRIGGER
BEFORE INSERT ON EVALUATIONS
FOR EACH ROW
BEGIN
 :NEW.evaluation_id := evaluations_seq.NEXTVAL;
END;

To see the schema objects on which triggers depend, run this statement:

SELECT * FROM ALL_DEPENDENCIES WHERE TYPE = 'TRIGGER';

If an object on which a trigger depends is dropped, or changed such that there is a
mismatch between the trigger and the object, then the trigger is invalidated. The next
time the trigger is invoked, it is recompiled. To recompile a trigger immediately, run
the ALTER TRIGGER statement with the COMPILE clause. For example:

ALTER TRIGGER NEW_EVALUATION_TRIGGER COMPILE;

Dropping Triggers
You must drop a trigger before dropping the objects on which it depends.

To drop a trigger, use either the SQL Developer navigation frame and Drop tool, or the
DDL statement DROP TRIGGER.

To drop a trigger using the Drop tool:
1. On the Connections tab, expand hr_conn.

Under the hr_conn icon, a list of schema object types appears.

2. Expand Triggers.

A list of triggers appears.

3. Right-click the name of the trigger to drop.

A list of choices appears.

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about the ALTER TRIGGER statement

■ Oracle Database SQL Language Reference for more information
about the ALTER TABLE statement

See Also:

■ Oracle Database PL/SQL Language Reference for more information
about trigger compilation and dependencies

Dropping Triggers

Using Triggers 8-9

4. Click Drop Trigger.

The Drop window opens.

5. Click Apply.

The Confirmation window opens.

6. Click OK.

See Also:

■ "About Data Definition Language (DDL) Statements" on page 6-1
for general information that applies to the DROP TRIGGER statement

■ Oracle Database PL/SQL Language Reference for information about
the DROP TRIGGER statement

Dropping Triggers

8-10 Oracle Database Express Edition 2 Day Developer's Guide

9

Working in a Global Environment 9-1

9Working in a Global Environment

This chapter contains the following topics:

■ About Globalization Support Features

■ About Initial NLS Parameter Values

■ Viewing NLS Parameter Values

■ Changing NLS Parameter Values

■ About Individual NLS Parameters

■ Using Unicode in Globalized Applications

About Globalization Support Features
Globalization support features enable you to develop multilingual applications that
can be run simultaneously from anywhere in the world. An application can render the
content of the user interface, and process data, using the native language and locale
preferences of the user.

Topics:

■ About Language Support

■ About Territory Support

■ About Date and Time Formats

■ About Calendar Formats

■ About Numeric and Monetary Formats

■ About Linguistic Sorting and String Searching

■ About Length Semantics

■ About Unicode and SQL National Character Data Types

Note: In the past, Oracle called globalization support National
Language Support (NLS), but NLS is actually a subset of
globalization support. NLS is the ability to choose a national language
and store data using a specific character set. NLS is implemented with
NLS parameters.

See Also: Oracle Database Globalization Support Guide for more
information about globalization support features

About Globalization Support Features

9-2 Oracle Database Express Edition 2 Day Developer's Guide

About Language Support
Oracle Database Express Edition (Oracle Database XE) enables you to store, process,
and retrieve data in native languages. The languages that can be stored in a database
are all languages written in scripts that are encoded by Oracle-supported character
sets. Through the use of Unicode databases and datatypes, Oracle Database supports
most contemporary languages.

Additional support is available for a subset of the languages. The database can, for
example, display dates using translated month names, and can sort text data according
to cultural conventions.

In this document, the term language support refers to the additional
language-dependent functionality, and not to the ability to store text of a specific
language. For example, language support includes displaying dates or sorting text
according to specific locales and cultural conventions. Additionally, for some
supported languages, Oracle Database XE provides translated server messages and a
translated user interface for the database utilities.

About Territory Support
Oracle Database XE supports cultural conventions that are specific to geographical
locations. The default local time format, date format, and numeric and monetary
conventions depend on the local territory setting. Setting different NLS parameters
enables the database session to use different cultural settings. For example, you can set
the euro (EUR) as the primary currency and the Japanese yen (JPY) as the secondary
currency for a given database session, even when the territory is AMERICA.

About Date and Time Formats
Different countries have different conventions for displaying the hour, day, month,
and year. For example:

Note: Oracle Database XE 11.2 provides translated server messages
for Japanese, Simplified Chinese, and Brazilian Portuguese. For all
other supported languages, server messages are displayed in English.

See Also:

■ "About the NLS_LANGUAGE Parameter" on page 9-11

■ Oracle Database Globalization Support Guide for a complete list of
languages that Oracle Database XE supports

■ Oracle Database Globalization Support Guide for a list of languages
into which Oracle Database messages are translated

See Also:

■ "About the NLS_TERRITORY Parameter" on page 9-13

■ Oracle Database Globalization Support Guide for a complete list of
territories that Oracle Database XE supports

Country Date Format Example Time Format Example

China yyyy-mm-dd 2005-02-28 hh24:mi:ss 13:50:23

About Globalization Support Features

Working in a Global Environment 9-3

About Calendar Formats
Oracle Database XE stores this calendar information for each territory:

■ First day of the week

Sunday in some cultures, Monday in others. Set by the NLS_TERRITORY parameter.

■ First week of the calendar year

Some countries use week numbers for scheduling, planning, and bookkeeping. In
the ISO standard, this week number can differ from the week number of the
calendar year. For example, 1st Jan 2005 is in ISO week number 53 of 2004. An ISO
week starts on Monday and ends on Sunday. To support the ISO standard, Oracle
Database XE provides the IW date format element, which returns the ISO week
number. The first calendar week of the year is set by the NLS_TERRITORY
parameter.

■ Number of days and months in a year

Oracle Database XE supports six calendar systems in addition to the Gregorian
calendar, which is the default. These additional calendar systems are:

■ Japanese Imperial

Has the same number of months and days as the Gregorian calendar, but the
year starts with the beginning of each Imperial Era.

■ ROC Official

Has the same number of months and days as the Gregorian calendar, but the
year starts with the founding of the Republic of China.

■ Persian

The first six months have 31 days each, the next five months have 30 days
each, and the last month has either 29 days or (in leap year) 30 days.

■ Thai Buddha uses a Buddhist calendar.

■ Arabic Hijrah has 12 months and 354 or 355 days.

Estonia dd.mm.yyyy 28.02.2005 hh24:mi:ss 13:50:23

Germany dd.mm.rr 28.02.05 hh24:mi:ss 13:50:23

UK dd/mm/yyyy 28/02/2005 hh24:mi:ss 13:50:23

U.S. mm/dd/yyyy 02/28/2005 hh:mi:ssxff am 1:50:23.555 PM

See Also:

■ "About the NLS_DATE_FORMAT Parameter" on page 9-14

■ "About the NLS_DATE_LANGUAGE Parameter" on page 9-16

■ "About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_
TZ_FORMAT Parameters" on page 9-17

■ Oracle Database Globalization Support Guide for information about
date/time data types and time zone support

■ Oracle Database SQL Language Reference for information about date
and time formats

Country Date Format Example Time Format Example

About Globalization Support Features

9-4 Oracle Database Express Edition 2 Day Developer's Guide

■ English Hijrah has 12 months and 354 or 355 days.

The calendar system is specified by the NLS_CALENDAR parameter.

■ First year of era

The Islamic calendar starts from the year of the Hegira. The Japanese Imperial
calendar starts from the beginning of an Emperor's reign (for example, 1998 is the
tenth year of the Heisei era).

About Numeric and Monetary Formats
Different countries have different numeric and monetary conventions. For example:

About Linguistic Sorting and String Searching
Different languages have different sort orders (collating sequences). Also, different
countries or cultures that use the same alphabets sort words differently. For example,
in Danish, Æ is after Z, and Y and Ü are considered to be variants of the same letter.

See Also:

■ "About the NLS_TERRITORY Parameter" on page 9-13

■ "About the NLS_CALENDAR Parameter" on page 9-18

■ Oracle Database Globalization Support Guide for information about
calendar formats

Country Numeric Format Monetary Format

China 1,234,567.89 ¥1,234.56

Estonia 1 234 567,89 1 234,56 kr

Germany 1.234.567,89 1.234,56€

UK 1,234,567.89 £1,234.56

U.S. 1,234,567.89 $1,234.56

See Also:

■ "About the NLS_NUMERIC_CHARACTERS Parameter" on
page 9-19

■ "About the NLS_CURRENCY Parameter" on page 9-20

■ "About the NLS_ISO_CURRENCY Parameter" on page 9-21

■ "About the NLS_DUAL_CURRENCY Parameter" on page 9-22

■ Oracle Database Globalization Support Guide for information about
numeric and list parameters

■ Oracle Database Globalization Support Guide for information about
monetary parameters

■ Oracle Database SQL Language Reference for information about
number format models

About Globalization Support Features

Working in a Global Environment 9-5

About Length Semantics
In single-byte character sets, the number of bytes and the number of characters in a
string are the same. In multibyte character sets, a character or code point consists of
one or more bytes. Calculating the number of characters based on byte length can be
difficult in a variable-width character set. Calculating column length in bytes is called
byte semantics, while measuring column length in characters is called character
semantics.

Character semantics is useful for specifying the storage requirements for multibyte
strings of varying widths. For example, in a Unicode database (AL32UTF8), suppose
that you must have a VARCHAR2 column that can store up to five Chinese characters
with five English characters. Using byte semantics, this column requires 15 bytes for
the Chinese characters, which are 3 bytes long, and 5 bytes for the English characters,
which are 1 byte long, for a total of 20 bytes. Using character semantics, the column
requires 10 characters.

About Unicode and SQL National Character Data Types
Unicode is a character encoding system that defines every character in most of the
spoken languages in the world. In Unicode, every character has a unique code,
regardless of the platform, program, or language.

You can store Unicode characters in an Oracle Database XE in two ways:

■ You can create a Unicode database that enables you to store UTF-8 encoded
characters as SQL character datatypes (CHAR, VARCHAR2, CLOB, and LONG).

■ You can declare columns and variables that have SQL national character
datatypes.

The SQL national character data types are NCHAR, NVARCHAR2, and NCLOB. They are also
called Unicode data types, because they are used only for storing Unicode data.

The national character set, which is used for all SQL national character data types, is
specified when the database is created. The national character set can be either UTF8
or AL16UTF16 (default).

When you declare a column or variable of the type NCHAR or NVARCHAR2, the length that
you specify is the number of characters, not the number of bytes.

See Also:

■ "About the NLS_SORT Parameter" on page 9-23

■ "About the NLS_COMP Parameter" on page 9-24

■ Oracle Database Globalization Support Guide for more information
about linguistic sorting and string searching

See Also:

■ "About the NLS_LENGTH_SEMANTICS Parameter" on page 9-26

■ Oracle Database Globalization Support Guide for information about
character sets and length semantics

About Initial NLS Parameter Values

9-6 Oracle Database Express Edition 2 Day Developer's Guide

About Initial NLS Parameter Values
Except in SQL Developer, the initial values of NLS parameters are set by database
initialization parameters. The DBA can set the values of initialization parameters in the
initialization parameter file, and they take effect the next time the database is started.

In SQL Developer, the initial values of NLS parameters are as shown in Table 9–1.

Viewing NLS Parameter Values
To view the current values of NLS parameters, use the SQL Developer report National
Language Support Parameters.

See Also:

■ Oracle Database Globalization Support Guide for more information
about Unicode

■ Oracle Database Globalization Support Guide for more information
about storing Unicode characters in an Oracle Database XE

■ Oracle Database Globalization Support Guide for more information
about SQL national character data types

Table 9–1 Initial Values of NLS Parameters in SQL Developer

Parameter Initial Value

NLS_CALENDAR GREGORIAN

NLS_CHARACTERSET AL32UTF8

NLS_COMP BINARY

NLS_CURRENCY $

NLS_DATE_FORMAT DD-MON-RR

NLS_DATE_LANGUAGE AMERICAN

NLS_DUAL_CURRENCY $

NLS_ISO_CURRENCY AMERICA

NLS_LANGUAGE AMERICAN

NLS_LENGTH_SEMANTICS BYTE

NLS_NCHAR_CHARACTERSET AL16UTF16

NLS_NCHAR_CONV_EXCP FALSE

NLS_NUMERIC_CHARACTERS .,

NLS_SORT BINARY

NLS_TERRITORY AMERICA

NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM

NLS_TIMESTAMP_TZ_FORMAT DD-MON-RR HH.MI.SSXFF AM TZR

NLS_TIME_FORMAT HH.MI.SSXFF AM

NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR

See Also: Oracle Database Administrator's Guide for information
about initialization parameters and initialization parameter files

Changing NLS Parameter Values

Working in a Global Environment 9-7

To view the National Language Support Parameters report:
1. In the SQL Developer window, click the tab Reports.

The Reports pane shows a list of reports.

2. Expand Data Dictionary Reports.

A list of data dictionary reports appears.

3. Expand About Your Database.

A list of reports appears.

4. Click National Language Support Parameters.

The Select Connection window opens. It has a Connection field with a menu.

5. From the menu, select hr_conn.

6. Click OK.

The Select Connection window closes and the National Language Support
Parameters pane appears, showing the names of the NLS parameters and their
current values.

Changing NLS Parameter Values
You can change the value of one or more NLS parameters in any of these ways:

■ Change the values for all SQL Developer connections, current and future.

■ On the client, change the settings of the corresponding NLS environment
variables.

Only on the client, the new values of the NLS environment variables override the
values of the corresponding NLS parameters.

You can use environment variables to specify locale-dependent behavior for the
client. For example, on a Linux system, this statement sets the value of the NLS_
SORT environment variable to FRENCH, overriding the value of the NLS_SORT
parameter:

% setenv NLS_SORT FRENCH

■ Change the values only for the current session, using an ALTER SESSION statement
with this syntax:

ALTER SESSION SET parameter_name=parameter_value
 [parameter_name=parameter_value]... ;

Note: if you are connected to the database as the database
administrator user SYS, you can use this query instead of the
SQL Developer report:

SELECT * FROM V$NLS_PARAMETERS;

See Also: Oracle Database SQL Developer User's Guide for more
information about SQL Developer reports

Note: Environment variables might be platform-dependent.

Changing NLS Parameter Values

9-8 Oracle Database Express Edition 2 Day Developer's Guide

Only in the current session, the new values override those set in all of the
preceding ways.

You can use the ALTER SESSION to test your application with the settings for
different locales.

■ Change the values only for the current SQL function invocation.

Only for the current SQL function invocation, the new values override those set in
all of the preceding ways.

Topics:

■ Changing NLS Parameter Values for All SQL Developer Connections

■ Changing NLS Parameter Values for the Current SQL Function Invocation

Changing NLS Parameter Values for All SQL Developer Connections
The following procedure shows how to change the values of NLS parameters for all
SQL Developer connections, current and future.

To change National Language Support Parameter values:
1. In the SQL Developer window, click the menu Tools.

A menu appears.

2. From menu, select Preferences.

The Preferences window opens.

3. In the left frame of the Preferences window, expand Database.

A list of database preferences appears.

4. Click NLS.

A list of NLS parameters and their current values appears. The value fields are
menus.

5. From the menu to the right of each parameter whose value you want to change,
select the desired value.

6. Click OK.

The NLS parameters now have the values that you specified. To verify these
values, see "Viewing NLS Parameter Values" on page 9-6.

Changing NLS Parameter Values for the Current SQL Function Invocation
SQL functions whose behavior depends on the values of NLS parameters are called
locale-dependent. Some locale-dependent SQL functions have optional NLS
parameters. These functions are:

See Also:

■ Oracle Database SQL Language Reference for more information
about the ALTER SESSION statement

■ Oracle Database Globalization Support Guide for more information
about setting NLS parameters

See Also: Oracle Database SQL Developer User's Guide for more
information about SQL Developer preferences

Changing NLS Parameter Values

Working in a Global Environment 9-9

■ TO_CHAR

■ TO_DATE

■ TO_NUMBER

■ NLS_UPPER

■ NLS_LOWER

■ NLS_INITCAP

■ NLSSORT

In all of the preceding functions, you can specify these NLS parameters:

■ NLS_DATE_LANGUAGE

■ NLS_DATE_LANGUAGE

■ NLS_NUMERIC_CHARACTERS

■ NLS_CURRENCY

■ NLS_ISO_CURRENCY

■ NLS_DUAL_CURRENCY

■ NLS_CALENDAR

■ NLS_SORT

In the NLSSORT function, you can also specify these NLS parameters:

■ NLS_LANGUAGE

■ NLS_TERRITORY

■ NLS_DATE_FORMAT

To specify NLS parameters in a function, use this syntax:

'parameter=value' ['parameter=value']...

Suppose that you want NLS_DATE_LANGUAGE to be AMERICAN when this query is
evaluated:

SELECT last_name FROM employees WHERE hire_date > '01-JAN-1999';

You can set NLS_DATE_LANGUAGE to AMERICAN before running the query:

ALTER SESSION SET NLS_DATE_LANGUAGE=American;
SELECT last_name FROM employees WHERE hire_date > '01-JAN-1999';

Alternatively, you can set NLS_DATE_LANGUAGE to AMERICAN inside the query, using the
locale-dependent SQL function TO_DATE with its optional NLS_DATE_LANGUAGE
parameter:

SELECT last_name FROM employees
WHERE hire_date > TO_DATE('01-JAN-1999', 'DD-MON-YYYY',
 'NLS_DATE_LANGUAGE=AMERICAN');

Tip: Specify optional NLS parameters in locale-dependent SQL
functions only in SQL statements that must be independent of the
session NLS parameter values. Using session default values for NLS
parameters in SQL functions usually results in better performance.

About Individual NLS Parameters

9-10 Oracle Database Express Edition 2 Day Developer's Guide

About Individual NLS Parameters
Topics:

■ About Locale and the NLS_LANG Parameter

■ About the NLS_LANGUAGE Parameter

■ About the NLS_TERRITORY Parameter

■ About the NLS_DATE_FORMAT Parameter

■ About the NLS_DATE_LANGUAGE Parameter

■ About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT
Parameters

■ About the NLS_CALENDAR Parameter

■ About the NLS_NUMERIC_CHARACTERS Parameter

■ About the NLS_CURRENCY Parameter

■ About the NLS_ISO_CURRENCY Parameter

■ About the NLS_DUAL_CURRENCY Parameter

■ About the NLS_SORT Parameter

■ About the NLS_COMP Parameter

■ About the NLS_LENGTH_SEMANTICS Parameter

About Locale and the NLS_LANG Parameter
A locale is a linguistic and cultural environment in which a system or application
runs. The simplest way to specify a locale for Oracle Database XE software is to set the
NLS_LANG parameter.

The NLS_LANG parameter sets the default values of the parameters NLS_LANGUAGE and
NLS_TERRITORY for both the server session (for example, SQL statement processing)
and the client application (for example, display formatting in Oracle Database XE
tools). The NLS_LANG parameter also sets the character set that the client application
uses for data entered or displayed.

The default value of NLS_LANG is set during database installation. You can use the
ALTER SESSION statement to change the values of NLS parameters, including those set
by NLS_LANG, for your session. However, only the client can change the NLS settings in
the client environment.

See Also: Oracle Database Globalization Support Guide for more
information about locale-dependent SQL functions with optional NLS
parameters

See Also:

■ Oracle Database Globalization Support Guide for more information
about setting up a globalization support environment

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

Working in a Global Environment 9-11

About the NLS_LANGUAGE Parameter
Specifies: Default language of the database. Default conventions for:

■ Language for server messages

■ Language for names and abbreviations of days and months that are specified in
the SQL functions TO_CHAR and TO_DATE

■ Symbols for default-language equivalents of AM, PM, AD, and BC

■ Default sorting order for character data when the ORDER BY clause is specified

■ Writing direction

■ Affirmative and negative response strings (for example, YES and NO)

Acceptable Values: Any language name that Oracle supports. For a list, see Oracle
Database Globalization Support Guide.

Default Value: Set by NLS_LANG, described in "About Locale and the NLS_LANG
Parameter" on page 9-10.

Sets default values of:

■ NLS_DATE_LANGUAGE, described in "About the NLS_DATE_LANGUAGE
Parameter" on page 9-16.

■ NLS_SORT, described in "About the NLS_SORT Parameter" on page 9-23.

Example 9–1 shows how setting NLS_LANGUAGE to ITALIAN and GERMAN affects month
abbreviations.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

Example 9–1 NLS_LANGUAGE Affects Month Abbreviations

1. Note the current value of NLS_LANGUAGE.

2. If the value in step 1 is not ITALIAN, change it:

See Also:

■ Oracle Database Globalization Support Guide for more information
about specifying a locale with the NLS_LANG parameter

■ Oracle Database Globalization Support Guide for information about
languages, territories, character sets, and other locale data
supported by Oracle Database

■ "About the NLS_LANGUAGE Parameter" on page 9-11

■ "About the NLS_TERRITORY Parameter" on page 9-13

■ "Changing NLS Parameter Values" on page 9-7

Note: Oracle Database XE 11.2 provides translated server messages
for Japanese, Simplified Chinese, and Brazilian Portuguese. For all
other supported languages, server messages are displayed in English.

About Individual NLS Parameters

9-12 Oracle Database Express Edition 2 Day Developer's Guide

ALTER SESSION SET NLS_LANGUAGE=ITALIAN;

3. Query a nonexistent table:

SELECT * FROM nonexistent_table;

Result:

SELECT * FROM nonexistent_table
 *
ERROR at line 1:
ORA-00942: table or view does not exist

4. Run this query:

SELECT LAST_NAME, HIRE_DATE
FROM EMPLOYEES
WHERE EMPLOYEE_ID IN (111, 112, 113);

Result:

LAST_NAME HIRE_DATE
------------------------- ---------
Sciarra 30-SET-97
Urman 07-MAR-98
Popp 07-DIC-99

3 rows selected.

5. Change the value of NLS_LANGUAGE to GERMAN:

ALTER SESSION SET NLS_LANGUAGE=GERMAN;

6. Repeat the query from step 3.

Result:

SELECT * FROM nonexistent_table
 *
ERROR at line 1:
ORA-00942: table or view does not exist

7. Repeat the query from step 4.

Result:

LAST_NAME HIRE_DATE
------------------------- ---------
Sciarra 30-SEP-97
Urman 07-MRZ-98
Popp 07-DEZ-99

3 rows selected.

8. Set NLS_LANGUAGE to the value that it had at step 1.

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_LANGUAGE parameter

■ "About Language Support" on page 9-2

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

Working in a Global Environment 9-13

About the NLS_TERRITORY Parameter
Specifies: Default conventions for:

■ Date format

■ Timestamp format

■ Decimal character and group separator

■ Local currency symbol

■ ISO currency symbol

■ Dual currency symbol

Acceptable Values: Any territory name that Oracle supports. For a list, see Oracle
Database Globalization Support Guide.

Default Value: Set by NLS_LANG, described in "About Locale and the NLS_LANG
Parameter" on page 9-10.

Sets default values of:

■ NLS_DATE_FORMAT, described in "About the NLS_DATE_FORMAT Parameter" on
page 9-14.

■ NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT, described in "About NLS_
TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters" on
page 9-17.

■ NLS_NUMERIC_CHARACTERS, described in "About the NLS_NUMERIC_
CHARACTERS Parameter" on page 9-19.

■ NLS_CURRENCY, described in "About the NLS_CURRENCY Parameter" on
page 9-20.

■ NLS_ISO_CURRENCY, described in "About the NLS_ISO_CURRENCY Parameter" on
page 9-21.

■ NLS_DUAL_CURRENCY, described in "About the NLS_DUAL_CURRENCY
Parameter" on page 9-22.

Example 9–2 shows how setting NLS_TERRITORY to JAPAN and AMERICA affects the
currency symbol.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

Example 9–2 NLS_TERRITORY Affects Currency Symbol

1. Note the current value of NLS_TERRITORY.

2. If the value in step 1 is not JAPAN, change it:

ALTER SESSION SET NLS_TERRITORY=JAPAN;

3. Run this query:

SELECT TO_CHAR(SALARY,'L99G999D99') SALARY
FROM EMPLOYEES
WHERE EMPLOYEE_ID IN (100, 101, 102);

Result:

About Individual NLS Parameters

9-14 Oracle Database Express Edition 2 Day Developer's Guide

SALARY

 ¥24,000.00
 ¥17,000.00
 ¥17,000.00

3 rows selected.

4. Change the value of NLS_TERRITORY to AMERICA:

ALTER SESSION SET NLS_TERRITORY=AMERICA;

5. Repeat the query from step 3.

Result:

SALARY

 $24,000.00
 $17,000.00
 $17,000.00

3 rows selected.

6. Set NLS_TERRITORY to the value that it had at step 1.

About the NLS_DATE_FORMAT Parameter
Specifies: Default date format to use with the TO_CHAR and TO_DATE functions (which
are introduced in "Using Conversion Functions in Queries" on page 4-22).

Acceptable Values: Any any valid datetime format model. For example:

NLS_DATE_FORMAT='MM/DD/YYYY'

For information about datetime format models, see Oracle Database SQL Language
Reference.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter" on page 9-13.

The default date format might not correspond to the convention used in a given
territory. To get dates in localized formats, you can use the 'DS' (short date) and 'DL'
(long date) formats.

Example 9–3 shows how setting NLS_TERRITORY to AMERICA and FRANCE affects the
default, short, and long date formats.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_TERRITORY parameter

■ "About Territory Support" on page 9-2

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

Working in a Global Environment 9-15

Example 9–3 NLS_TERRITORY Affects Date Formats

1. Note the current value of NLS_TERRITORY.

2. If the value in step 1 is not AMERICA, change it:

ALTER SESSION SET NLS_TERRITORY=AMERICA;

3. Run this query:

SELECT hire_date "Default",
 TO_CHAR(hire_date,'DS') "Short",
 TO_CHAR(hire_date,'DL') "Long"
FROM employees
WHERE employee_id IN (111, 112, 113);

Result:

Default Short Long
--------- ---------- -----------------------------
30-SEP-05 9/30/2005 Friday, September 30, 2005
07-MAR-06 3/7/2006 Tuesday, March 07, 2006
07-DEC-07 12/7/2007 Friday, December 07, 2007

3 rows selected.

4. Change the value of NLS_TERRITORY to FRANCE:

ALTER SESSION SET NLS_TERRITORY=FRANCE;

5. Repeat the query from step 3.

Result:

Default Short Long
-------- ---------- ---------------------------
30/09/05 30/09/2005 friday 30 september 2005
07/03/06 07/03/2006 tuesday 7 march 2006
07/12/07 07/12/2007 friday 7 december 2007

3 rows selected.

(To get the names of the days and months in French, you must set either NLS_
LANGUAGE or NLS_DATE_LANGUAGE to FRENCH before running the query.)

6. Set NLS_TERRITORY to the value that it had at step 1.

Example 9–4 changes the value of NLS_DATE_FORMAT, overriding the default value set
by NLS_TERRITORY.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

Example 9–4 NLS_DATE_FORMAT Overrides NLS_TERRITORY

1. Note the current values of NLS_TERRITORY and NLS_DATE_FORMAT.

2. If the valueof NLS_TERRITORY in step 1 is not AMERICA, change it:

ALTER SESSION SET NLS_TERRITORY=AMERICA;

3. If the valueof NLS_DATE_FORMAT in step 1 is not 'Day Month ddth', change it:

About Individual NLS Parameters

9-16 Oracle Database Express Edition 2 Day Developer's Guide

ALTER SESSION SET NLS_DATE_FORMAT='Day Month ddth';

4. Run this query (from previous example, step 3):

SELECT hire_date "Default",
 TO_CHAR(hire_date,'DS') "Short",
 TO_CHAR(hire_date,'DL') "Long"
FROM employees
WHERE employee_id IN (111, 112, 113);

Result:

Default Short Long
------------------------ ---------- -----------------------------
Friday September 30th 9/30/2005 Friday, September 30, 2005
Tuesday March 07th 3/7/2006 Saturday, March 07, 2006
Friday December 07th 12/7/2007 Friday, December 07, 2007

3 rows selected.

5. Set NLS_TERRITORY and NLS_DATE_FORMAT to the values that they had at step 1.

About the NLS_DATE_LANGUAGE Parameter
Specifies: Language for names and abbreviations of days and months that are
produced by:

■ SQL functions TO_CHAR and TO_DATE (which are introduced in "Using Conversion
Functions in Queries" on page 4-22)

■ Default date format (set by NLS_DATE_FORMAT, described in "About the NLS_
DATE_FORMAT Parameter" on page 9-14)

■ Symbols for default-language equivalents of AM, PM, AD, and BC

Acceptable Values: Any language name that Oracle supports. For a list, see Oracle
Database Globalization Support Guide.

Default Value: Set by NLS_LANGUAGE, described in "About the NLS_LANGUAGE
Parameter" on page 9-11.

Example 9–5 shows how setting NLS_DATE_LANGUAGE to FRENCH and SWEDISH affects the
displayed system date.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_DATE_FORMAT parameter

■ Oracle Database SQL Language Reference for more information
about the TO_CHAR function

■ Oracle Database SQL Language Reference for more information
about the TO_DATE function

■ "About Date and Time Formats" on page 9-2

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

Working in a Global Environment 9-17

Example 9–5 NLS_DATE_LANGUAGE Affects Displayed SYSDATE

1. Note the current value of NLS_DATE_LANGUAGE.

2. If the value of NLS_DATE_LANGUAGE in step 1 is not FRENCH, change it:

ALTER SESSION SET NLS_DATE_LANGUAGE=FRENCH;

3. Run this query:

SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy') "System Date"
FROM DUAL;

Result:

System Date

Mercredi:06 Juillet 2011

4. Change the value of NLS_DATE_LANGUAGE to SWEDISH:

ALTER SESSION SET NLS_DATE_LANGUAGE=SWEDISH;

5. Repeat the query from step 3.

Result:

System Date

Onsdag :06 Juli 2011

6. Set NLS_DATE_LANGUAGE to the value that it had at step 1.

About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters
Specify: Default date format for:

■ TIMESTAMP datatype

■ TIMESTAMP WITH LOCAL TIME ZONE datatype

Acceptable Values: Any any valid datetime format model. For example:

NLS_TIMESTAMP_FORMAT='YYYY-MM-DD HH:MI:SS.FF'
NLS_TIMESTAMP_TZ_FORMAT='YYYY-MM-DD HH:MI:SS.FF TZH:TZM'

For information about datetime format models, see Oracle Database SQL Language
Reference.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter" on page 9-13.

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_DATE_LANGUAGE parameter

■ Oracle Database SQL Language Reference for more information
about the TO_CHAR function

■ Oracle Database SQL Language Reference for more information
about the TO_DATE function

■ "About Date and Time Formats" on page 9-2

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

9-18 Oracle Database Express Edition 2 Day Developer's Guide

About the NLS_CALENDAR Parameter
Specifies: Calendar system for the database.

Acceptable Values: Any calendar system that Oracle supports. For a list, see Oracle
Database Globalization Support Guide.

Default Value: Gregorian

Example 9–6 shows how setting NLS_CALENDAR to 'English Hijrah' and Gregorian
affects the displayed system date.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

Example 9–6 NLS_CALENDAR Affects Displayed SYSDATE

1. Note the current value of NLS_CALENDAR.

2. If the value of NLS_CALENDAR in step 1 is not 'English Hijrah', change it:

ALTER SESSION SET NLS_CALENDAR='English Hijrah';

3. Run this query:

SELECT SYSDATE FROM DUAL;

Result:

SYSDATE

04 Sha'Ban 1432

4. Change the value of NLS_CALENDAR to 'Gregorian':

ALTER SESSION SET NLS_CALENDAR='Gregorian';

5. Run this query:

SELECT SYSDATE FROM DUAL;

Result:

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_TIMESTAMP_FORMAT parameter

■ Oracle Database Globalization Support Guide for more information
about the NLS_TIMESTAMP_TZ_FORMAT parameter

■ Oracle Database Globalization Support Guide for information about
date/time data types and time zone support

■ Oracle Database SQL Language Reference for more information
about the TIMESTAMP datatype

■ Oracle Database SQL Language Reference for more information
about the TIMESTAMP WITH LOCAL TIME ZONE data type

■ "About Date and Time Formats" on page 9-2

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

Working in a Global Environment 9-19

SYSDATE

06-JUL-11

6. Set NLS_CALENDAR to the value that it had at step 1.

About the NLS_NUMERIC_CHARACTERS Parameter
Specifies: Decimal character (which separates the integer and decimal parts of a
number) and group separator (which separates integer groups to show thousands and
millions, for example). The group separator is the character returned by the numeric
format element G.

Acceptable Values: Any two different single-byte characters except:

■ A numeric character

■ Plus (+)

■ Minus (-)

■ Less than (<)

■ Greater than (>)

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter" on page 9-13.

In a SQL statement, you can represent a number as either:

■ Numeric literal

A numeric literal is not enclosed in quotation marks, always uses a period (.) as
the decimal character, and never contains a group separator.

■ Text literal

A text literal is enclosed in single quotation marks. It is implicitly or explicitly
converted to a number, if required, according to the current NLS settings.

Example 9–7 shows how two different NLS_NUMERIC_CHARACTERS settings affect the
displayed result of the same query.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

Example 9–7 NLS_NUMERIC_CHARACTERS Affects Decimal Character and Group
Separator

1. Note the current value of NLS_NUMERIC_CHARACTERS.

2. If the value of NLS_NUMERIC_CHARACTERS in step 1 is not ",." (decimal character is
comma and group separator is period), change it:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS=",.";

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_CALENDAR parameter

■ "About Calendar Formats" on page 9-3

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

9-20 Oracle Database Express Edition 2 Day Developer's Guide

3. Run this query:

SELECT TO_CHAR(4000, '9G999D99') "Number" FROM DUAL;

Result:

Number

 4.000,00

4. Change the value of NLS_NUMERIC_CHARACTERS to ",." (decimal character is period
and group separator is comma):

ALTER SESSION SET NLS_NUMERIC_CHARACTERS=".,";

5. Run this query:

SELECT TO_CHAR(4000, '9G999D99') "Number" FROM DUAL;

Result:

Number

 4,000.00

6. Set NLS_NUMERIC_CHARACTERS to the value that it had at step 1.

About the NLS_CURRENCY Parameter
Specifies: Local currency symbol (the character string returned by the numeric format
element L).

Acceptable Values: Any valid currency symbol string.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter" on page 9-13.

Example 9–8 changes the value of NLS_CURRENCY, overriding the default value set by
NLS_TERRITORY.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

Example 9–8 NLS_CURRENCY Overrides NLS_TERRITORY

1. Note the current values of NLS_TERRITORY and NLS_CURRENCY.

2. If the valueof NLS_TERRITORY in step 1 is not AMERICA, change it:

ALTER SESSION SET NLS_TERRITORY=AMERICA;

3. Run this query:

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_NUMERIC_CHARACTERS parameter

■ "About Numeric and Monetary Formats" on page 9-4

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

Working in a Global Environment 9-21

SELECT TO_CHAR(salary, 'L099G999D99') "Salary"
FROM EMPLOYEES
WHERE salary > 13000;

Result:

Salary

 $024,000.00
 $017,000.00
 $017,000.00
 $014,000.00
 $013,500.00

4. Change the value of NLS_CURRENCY to '¥':

ALTER SESSION SET NLS_CURRENCY='¥';

5. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Salary"
FROM EMPLOYEES
WHERE salary > 13000;

Result:

Salary

 ¥024,000.00
 ¥017,000.00
 ¥017,000.00
 ¥014,000.00
 ¥013,500.00

6. Set NLS_TERRITORY and NLS_CURRENCY to the values that they had at step 1.

About the NLS_ISO_CURRENCY Parameter
Specifies: ISO currency symbol (the character string returned by the numeric format
element C).

Acceptable Values: Any valid currency symbol string.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter" on page 9-13.

Local currency symbols can be ambiguous, but ISO currency symbols are unique.

Example 9–9 shows that the territories AUSTRALIA and AMERICA have the same local
currency symbol, but different ISO currency symbols.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_CURRENCY parameter

■ "About Numeric and Monetary Formats" on page 9-4

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

9-22 Oracle Database Express Edition 2 Day Developer's Guide

Example 9–9 NLS_ISO_CURRENCY

1. Note the current values of NLS_TERRITORY and NLS_ISO_CURRENCY.

2. If the value of NLS_TERRITORY in step 1 is not AUSTRALIA, change it:

ALTER SESSION SET NLS_TERRITORY=AUSTRALIA;

3. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Local",
 TO_CHAR(salary, 'C099G999D99') "ISO"
FROM EMPLOYEES
WHERE salary > 15000;

Result:

Local ISO
--------------------- ------------------
 $024,000.00 AUD024,000.00
 $017,000.00 AUD017,000.00
 $017,000.00 AUD017,000.00

4. Change the value of NLS_TERRITORY to AMERICA:

ALTER SESSION SET NLS_TERRITORY=AMERICA;

5. Run this query:

SELECT TO_CHAR(salary, 'L099G999D99') "Local",
 TO_CHAR(salary, 'C099G999D99') "ISO"
FROM EMPLOYEES
WHERE salary > 15000;

Result:

Local ISO
--------------------- ------------------
 $024,000.00 USD024,000.00
 $017,000.00 USD017,000.00
 $017,000.00 USD017,000.00

6. Set NLS_TERRITORY and NLS_ISO_CURRENCY to the values that they had at step 1.

About the NLS_DUAL_CURRENCY Parameter
Specifies: Dual currency symbol (introduced to support the euro currency symbol
during the euro transition period).

Acceptable Values: Any valid currency symbol string.

Default Value: Set by NLS_TERRITORY, described in "About the NLS_TERRITORY
Parameter" on page 9-13.

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_ISO_CURRENCY parameter

■ "About Numeric and Monetary Formats" on page 9-4

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

Working in a Global Environment 9-23

About the NLS_SORT Parameter
Specifies: Linguistic sort order (collating sequence) for queries that have the ORDER BY
clause.

Acceptable Values:

■ BINARY

Sort order is based on the binary sequence order of either the database character
set or the national character set, depending on the data type.

■ Any linguistic sort name that Oracle supports

Sort order is based on the order of the specified linguistic sort name. The linguistic
sort name is usually the same as the language name, but not always. For a list of
supported linguistic sort names, see Oracle Database Globalization Support Guide.

Default Value: Set by NLS_LANGUAGE, described in "About the NLS_LANGUAGE
Parameter" on page 9-11.

Example 9–10 shows how two different NLS_SORT settings affect the displayed result of
the same query. The settings are BINARY and Traditional Spanish (SPANISH_M).
Traditional Spanish treats ch, ll, and ñ as letters that follow c, l, and n, respectively.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

Example 9–10 NLS_SORT Affects Linguistic Sort Order

1. Create table for Spanish words:

CREATE TABLE temp (name VARCHAR2(15));

2. Populate table with some Spanish words:

INSERT INTO temp (name) VALUES ('laguna');
INSERT INTO temp (name) VALUES ('llama');
INSERT INTO temp (name) VALUES ('loco');

3. Note the current value of NLS_SORT.

4. If the valueof NLS_SORT in step 3 is not BINARY, change it:

ALTER SESSION SET NLS_SORT=BINARY;

5. Run this query:

SELECT * FROM temp ORDER BY name;

Result:

NAME

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_DUAL_CURRENCY parameter

■ "About Numeric and Monetary Formats" on page 9-4

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

9-24 Oracle Database Express Edition 2 Day Developer's Guide

laguna
llama
loco

6. Change the value of NLS_SORT to SPANISH_M (Traditional Spanish):

ALTER SESSION SET NLS_SORT=SPANISH_M;

7. Repeat the query from step 5.

Result:

NAME

laguna
loco
llama

8. Drop the table:

DROP TABLE temp;

9. Set NLS_SORT to the value that it had at step 3.

Case-Insensitive and Accent-Insensitive Sorts
Operations inside Oracle Database XE are sensitive to the case and the accents of the
characters. To perform a case-insensitive sort, append _CI to the value of the NLS_SORT
parameter (for example, BINARY_CI or XGERMAN_CI). To perform a sort that is both
case-insensitive and accent-insensitive, append _AI to the value of the NLS_SORT
parameter (for example, BINARY_AI or FRENCH_M_AI).

About the NLS_COMP Parameter
Specifies: Character comparison behavior of SQL operations.

Acceptable Values:

■ BINARY

SQL compares the binary codes of characters. One character is greater than
another if it has a higher binary code.

■ LINGUISTIC

SQL performs a linguistic comparison based on the value of the NLS_SORT
parameter, described in "About the NLS_SORT Parameter" on page 9-23.

■ ANSI

This value is provided only for backward compatibility.

Default Value: BINARY

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_SORT parameter

■ Oracle Database Globalization Support Guide for more information
about case-insensitive and accent-insensitive sorts

■ "About Linguistic Sorting and String Searching" on page 9-4

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

Working in a Global Environment 9-25

Example 9–11 shows that the result of a query can depend on the NLS_COMP setting.

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

Example 9–11 NLS_COMP Affects SQL Character Comparison

1. Note the current values of NLS_SORT and NLS_COMP.

2. If the values of NLS_SORT and NLS_COMP in step 1 are not SPANISH_M (Traditional
Spanish) and BINARY, respectively, change them:

ALTER SESSION SET NLS_SORT=SPANISH_M NLS_COMP=BINARY;

3. *Run this query:

SELECT LAST_NAME FROM EMPLOYEES
WHERE LAST_NAME LIKE 'C%';

Result:

LAST_NAME

Cabrio
Cambrault
Cambrault
Chen
Chung
Colmenares

6 rows selected

4. Change the value of NLS_COMP to LINGUISTIC:

ALTER SESSION SET NLS_COMP=LINGUISTIC;

5. Repeat the query from step 3.

Result:

LAST_NAME

Cabrio
Cambrault
Cambrault
Colmenares

4 rows selected

This time, Chen and Chung are not returned because Traditional Spanish treats ch
as a single character that follows c.

6. Set NLS_SORT and NLS_COMP to the values that they had in step 1.

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_COMP parameter

■ "About Linguistic Sorting and String Searching" on page 9-4

■ "Changing NLS Parameter Values" on page 9-7

About Individual NLS Parameters

9-26 Oracle Database Express Edition 2 Day Developer's Guide

About the NLS_LENGTH_SEMANTICS Parameter
Specifies: Length semantics for columns of the character data types CHAR, VARCHAR2,
and LONG; that is, whether these columns are specified in bytes or in characters.
(Applies only to columns that are declared after the parameter is set.)

Acceptable Values:

■ BYTE

New CHAR, VARCHAR2, and LONG columns are specified in bytes.

■ CHAR

New CHAR, VARCHAR2, and LONG columns are specified in characters.

Default Value: BYTE

To try this example in SQL Developer, enter the statements and queries in the
SQL Worksheet. For information about the SQL Worksheet, see "Running Queries in
SQL Developer" on page 4-2. The results shown here are from SQL*Plus; their format
is slightly different in SQL Developer.

Example 9–12 NLS_LENGTH_SEMANTICS Affects Storage of VARCHAR2 Column

1. Note the current values of NLS_LENGTH_SEMANTICS.

2. If the value of NLS_LENGTH_SEMANTICS in step 1 is not BYTE, change it:

ALTER SESSION SET NLS_LENGTH_SEMANTICS=BYTE;

3. Create a table with a VARCHAR2 column:

CREATE TABLE SEMANTICS_BYTE(SOME_DATA VARCHAR2(20));

4. Click the tab Connections.

The Connections pane shows the connection hr_conn.

5. Expand hr_conn.

A list of schema object types appears, including Tables.

6. Expand Tables.

A list of tables appears, including SEMANTICS_BYTE.

7. Select SEMANTICS_BYTE.

To the right of the Connections pane, the Columns pane shows that for Column
Name SOME_DATA, the Data Type is VARCHAR2(20 BYTE).

8. Change the value of NLS_LENGTH_SEMANTICS to CHAR:

ALTER SESSION SET NLS_LENGTH_SEMANTICS=CHAR;

9. Create another table with a VARCHAR2 column:

CREATE TABLE SEMANTICS_CHAR(SOME_DATA VARCHAR2(20));

10. In the Connections pane, click the Refresh icon.

The list of tables now includes SEMANTICS_CHAR.

11. Select SEMANTICS_CHAR.

Using Unicode in Globalized Applications

Working in a Global Environment 9-27

The Columns pane shows that for Column Name SOME_DATA, the Data Type is
VARCHAR2(20 CHAR).

12. Select SEMANTICS_BYTE again.

The Columns pane shows that for Column Name SOME_DATA, the Data Type is still
VARCHAR2(20 BYTE).

13. Set the value of NLS_LENGTH_SEMANTICS to the value that it had in step 1.

Using Unicode in Globalized Applications
You can insert and retrieve Unicode data. Data is transparently converted among the
database and client programs, which ensures that client programs are independent of
the database character set and national character set.

Topics:

■ Representing Unicode String Literals in SQL and PL/SQL

■ Avoiding Data Loss During Character-Set Conversion

Representing Unicode String Literals in SQL and PL/SQL
There are three ways to represent a Unicode string literal in SQL or PL/SQL:

■ N'string'

Example: N'résumé'.

Limitations: See "Avoiding Data Loss During Character-Set Conversion" on
page 9-28.

■ NCHR(number)

The SQL function NCHR returns the character whose binary equivalent is number in
the national character set. The character returned has data type NVARCHAR2.

Example: NCHR(36) represents $ in the default national character set, AL16UTF16.

Limitations: Portability of the value of NCHR(number) is limited to applications that
use the same national character set.

■ UNISTR('string')

The SQL function UNISTR converts string to the national character set.

For portability and data preservation, Oracle recommends that string contain
only ASCII characters and Unicode encoding values. A Unicode encoding value

See Also:

■ Oracle Database Globalization Support Guide for more information
about the NLS_LENGTH_SEMANTICS parameter

■ "About Length Semantics" on page 9-5

■ "Changing NLS Parameter Values" on page 9-7

See Also:

■ Oracle Database Globalization Support Guide for more information
about SQL and PL/SQL programming with Unicode

■ Oracle Database Globalization Support Guide for general information
about programming with Unicode

Using Unicode in Globalized Applications

9-28 Oracle Database Express Edition 2 Day Developer's Guide

has the form \xxxx, where xxxx is the hexadecimal value of a character code value
in UCS-2 encoding format.

Example: UNISTR('G\0061ry') represents 'Gary'

ASCII characters are converted to the database character set and then to the
national character set. Unicode encoding values are converted directly to the
national character set.

Avoiding Data Loss During Character-Set Conversion
As part of a SQL or PL/SQL statement, a literal (with or without the prefix N) is
encoded in the same character set as the rest of the statement. On the client side, the
statement is encoded in the client character set, which is determined by the NLS_LANG
parameter. On the server side, the statement is encoded in the database character set.

When the SQL or PL/SQL statement is transferred from the client to the database, its
character set is converted accordingly. If the database character set does not contain all
characters that the client used in the text literals, then data is lost in this conversion.
NCHAR string literals are more vulnerable than CHAR text literals, because they are
designed to be independent of the database character set.

To avoid data loss in conversion to an incompatible database character set, you can
activate the NCHAR literal replacement functionality. For more information, see Oracle
Database Globalization Support Guide.

See Also:

■ Oracle Database Globalization Support Guide for more information
about Unicode string literals

■ Oracle Database SQL Language Reference for more information
about the NCHR function

■ Oracle Database SQL Language Reference for more information
about the UNISTR function

10

Deploying an Oracle Database Express Edition Application 10-1

10Deploying an Oracle Database Express
Edition Application

This chapter contains the following topics:

■ About Deployment Environments

■ About Installation Script Files

■ Creating Installation Script Files

■ Installing the Sample Application

■ Checking the Validity of an Installation

■ Archiving the Installation Script Files

About Deployment Environments
Deployment is installing your application in one or more environments where other
users can run it.

The schema in which you develop your application is called the development
environment. (The development environment for the sample application is the sample
schema HR.) The other environments in which you deploy your application are called
deployment environments. These environments might exist in your organization; if
not, you can create them.

The first deployment environment is the test environment. In the test environment,
you can thoroughly test the functionality of the application, determine whether it is
packaged correctly, and fix any problems before deploying it in the production
environment.

You might also deploy your application to an education environment, either before or
after deploying it to the production environment. An education environment provides
a place for users to practice running the application without affecting other
environments.

About Installation Script Files
To deploy an application, you run one or more installation script files. If these files do
not exist, you can create them, with SQL Developer or any text editor.

An installation script file is an executable file (.sql file) that contains an installation
script. An installation script is composed ot DDL statements and (optionally) INSERT
statements. When you run an installation script file, the DDL statements create the
schema objects of your application in the deployment environment, and the INSERT

About Installation Script Files

10-2 Oracle Database Express Edition 2 Day Developer's Guide

statements insert the data from the tables in your development environment (the
source tables) into the corresponding tables in the deployment environment (the new
tables).

Topics:

■ About DDL Statements and Schema Object Dependencies

■ About INSERT Statements and Constraints

About DDL Statements and Schema Object Dependencies
When you run an installation script file, its DDL statements create the schema objects
of your application in the deployment environment. To create installation script files
correctly, and to run multiple installation script files in the correct order, you must
understand the dependencies between the schema objects of your application.

If the definition of object A references object B, then A depends on B. Therefore, you
must create B before you create A. Otherwise, the statement that creates B either fails
or creates B in an invalid state, depending on the object type.

Typically, you install schema objects and data in the deployment environment in this
order:

1. Package specifications

2. Tables (with constraints and indexes) in correct order

3. Sequences (often used by triggers)

4. Triggers

5. Synonyms

6. Views (which might reference functions, procedures, or synonyms)

7. Package bodies

8. Data

However, for a complex application, the order for creating the objects is rarely
obvious. Usually, you must consult the database designer or a diagram of the design.

About INSERT Statements and Constraints
When you run an installation script file that contains INSERT statements, the INSERT
statements insert the data from the source tables into the corresponding new tables.
For each source table in your application, you must determine whether any constraints
could be violated when their data is inserted in the new table. If so, you must first
disable those constraints, then insert the data, and then try to re-enable the constraints.
If a data item violates a constraint, you cannot re-enable that constraint until you
correct the data item.

If you are simply inserting lookup data in correct order, constraints are not violated.
Therefore, you do not need to disable them first.

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about schema object dependencies

■ "About Data Definition Language (DDL) Statements" on page 6-1

Creating Installation Script Files

Deploying an Oracle Database Express Edition Application 10-3

If you are inserting data from an outside source (such as a file, spreadsheet, or older
application), or from many tables that have much dependent data, disable the
constraints before inserting the data.

Some possible ways to disable and re-enable the constraints are:

■ Using SQL Developer, disable and re-enable the constraints one at a time.

■ Edit the installation script file, adding SQL statements that disable and re-enable
each constraint.

■ Create a SQL script with SQL statements that disable and enable each constraint.

■ Find the constraints in the Oracle Database Express Edition (Oracle Database XE)
data dictionary, and create a SQL script with the SQL statements to disable and
enable each constraint.

To find and enable the constraints used in the EVALUATIONS, PERFORMANCE_PARTS,
and SCORES tables, enter these statements into a SQL Worksheet window:

SELECT 'ALTER TABLE '|| TABLE_NAME || ' DISABLE CONSTRAINT '||
 CONSTRAINT_NAME ||';'
 FROM user_constraints
 WHERE table_name IN ('EVALUATIONS','PERFORMANCE_PARTS','SCORES');

SELECT 'ALTER TABLE '|| TABLE_NAME || ' ENABLE CONSTRAINT '||
 CONSTRAINT_NAME ||';'
 FROM user_constraints
 WHERE table_name IN ('EVALUATIONS','PERFORMANCE_PARTS','SCORES');

Creating Installation Script Files
This topic explains how to use SQL Developer to create installation script files, when
and how to edit installation script files that create sequences and triggers, and how to
create installation script files for the schema objects and data of the sample application.

The tutorials in this topic assume that you created the objects in the sample schema HR,
using the instructions in this document, and are deploying the sample application in
another standard HR schema.

Topics:

■ Creating an Installation Script File with SQL Developer

■ Editing Installation Script Files that Create Sequences

■ Editing Installation Script Files that Create Triggers

■ Tutorial: Creating an Installation Script File for the Sample Application

See Also:

■ "About the INSERT Statement" on page 5-1

■ "Ensuring Data Integrity in Tables" on page 6-5

Note: To do the tutorials in this document, you must be connected to
Oracle Database XE as the user HR from SQL Developer.

Creating Installation Script Files

10-4 Oracle Database Express Edition 2 Day Developer's Guide

Creating an Installation Script File with SQL Developer
To create an installation script file with SQL Developer, use the Database Export tool.
You specify the name of the installation script file and the objects and data to export,
and SQL Developer generates DDL statements for creating the objects and INSERT
statements for inserting the data into new tables, and writes these statements to the
installation script file.

To create an installation script file with the Database Export tool:
1. If you have not done so, create a directory for the installation script file, separate

from the Oracle Database XE installation directory (for example, C:\my_exports).

2. In the SQL Developer window, click the menu Tools.

A menu appears.

3. From menu, select Database Export.

The Source/Destination window opens.

4. In the Source/Destination window:

1. In the Connection field, select from the menu your connection to the
development environment.

2. Select the desired Export DDL options (and deselect any selected undesired
options).

For descriptions of the Export DDL Options, see Oracle Database SQL Developer
User's Guide.

3. If you do not want the installation script to export data, deselect Export Data.

4. In the Save As field, accept the default Single File and type the full path name
of the installation script file (for example, C:\my_exports\hr_export.sql).

The file name must end with .sql.

5. Click Next.

The Types to Export window appears, listing the types of objects that you can
export. To the left of each object type is a check box. By default, every check
box is selected.

5. In the Types to Export window:

1. Deselect the check boxes for the types that you do not want to export.

Selecting or deselecting Toggle All selects or deselects all check boxes.

2. Click Next.

The Specify Objects window appears.

6. In the Specify Objects window:

Note: In the following procedure, you might have to enlarge the
SQL Developer windows to see all fields and options.

Note: Do not deselect Terminator, or the installation script file will
fail.

Creating Installation Script Files

Deploying an Oracle Database Express Edition Application 10-5

1. Click More.

More fields appear, including the Schema and Type fields.

2. In the Schema field, select your schema from the menu.

3. In the Type field, select from the menu either ALL OBJECTS or a specific object
type (for example, TABLE).

4. Click Lookup.

A list of objects appears in the left frame. If the value of the Type field is ALL
OBJECTS, then the list contains all objects in the selected schema. If the value of
the Type field is a specific object type, then the list contains all objects of that
type in the selected schema.

5. Move the objects that you want to export from the left frame to the right
frame:

To move all objects, click >>. (To move all objects back, click <<.)

To move selected objects, select them and then click >. (To move selected
objects back, select them and click <.)

6. (Optional) Repeat steps 3 through 5 for other object types.

7. Click Next.

If you deselected Export Data in the Source/Destination window, then the
Export Summary window appears—go to step 8.

If you did not deselect Export Data in the Source/Destination window, then
the Specify Data window appears. The lower frame lists the objects that you
specified in the Specify Objects window.

7. In the Specify Data window:

1. Move the objects whose data you do not want to export from the lower frame
to the upper frame:

To move all objects, click the double upward arrow icon. (To move all objects
back, click the double downward arrow icon.)

To move selected objects, select them and then click the single upward arrow
icon.

2. Click Next.

The Export Summary window appears.

8. In the Export Summary window, click Finish.

The Exporting window opens, showing that exporting is occurring. When
exporting is complete, the Exporting window closes, and the SQL Worksheet
shows the contents of the installation script file that you specified in the
Source/Destination window.

9. In the installation script file, check that:

■ Referenced objects are created before their dependent objects.

■ Tables are created before data is inserted into them.

If necessary, edit the file in the SQL Worksheet or any text editor.

Creating Installation Script Files

10-6 Oracle Database Express Edition 2 Day Developer's Guide

Editing Installation Script Files that Create Sequences
For a sequence, SQL Developer generates a CREATE SEQUENCE statement whose START
WITH value is relative to the current value of the sequence in the development
environment.

If your application uses the sequence to generate unique keys, and you will not insert
the data from the source tables into the corresponding new tables, then you might
want to edit the START WITH value in the installation script file. You can edit the
installation script file in the SQL Worksheet or any text editor.

Editing Installation Script Files that Create Triggers
If your application has a BEFORE INSERT trigger on a source table, and you will insert
the data from that source table into the corresponding new table, then you must
decide if you want the trigger to fire before each INSERT statement in the installation
script file inserts data into the new table.

For example, in the sample application, NEW_EVALUATION_TRIGGER fires before a row is
inserted into the EVALUATIONS table, and generates the unique number for the primary
key of that row, using EVALUATIONS_SEQ. The trigger fires once for each row affected
by the triggering INSERT statement.

The source EVALUATIONS table is populated with primary keys. If you do not want the
installation script to put new primary key values in the new EVALUATIONS table, then
you must edit the CREATE TRIGGER statement in the installation script file as shown in
bold:

CREATE OR REPLACE
TRIGGER NEW_EVALUATION_TRIGGER
BEFORE INSERT ON EVALUATIONS
FOR EACH ROW
BEGIN
 IF :NEW.evaluation_id IS NULL THEN
 :NEW.evaluation_id := evaluations_seq.NEXTVAL
 END IF;
END;

Also, check the current value of the sequence. If it not is greater than the maximum
value in the primary key column, make it greater.

You can edit the installation script file in the SQL Worksheet or any text editor.

Two alternatives to editing the installation script file are:

See Also:

■ "About Data Definition Language (DDL) Statements" on page 6-1

■ "About the INSERT Statement" on page 5-1

■ Oracle Database SQL Developer User's Guide for more information
about SQL Developer dialog boxes

■ Oracle Database Advanced Application Developer's Guide for
information about schema object dependencies

■ "Tutorial: Creating an Installation Script File for the Sample
Application" on page 10-7

See Also: "Tutorial: Creating a Sequence" on page 6-21

Creating Installation Script Files

Deploying an Oracle Database Express Edition Application 10-7

■ Change the trigger definition in the source file and then re-create the installation
script file.

For information about changing triggers, see "Changing Triggers" on page 8-6.

■ Disable the trigger before running the data installation script file, and then
re-enable it afterward.

For information about disabling and enabling triggers, see "Disabling and
Enabling Triggers" on page 8-7.

Tutorial: Creating an Installation Script File for the Sample Application
This tutorial shows how to use the SQL Developer tool Database Export to create a
single installation script file for the sample application.

To create an installation script file for the sample application:
1. If you have not done so, create a directory for the installation script file, separate

from the Oracle Database XE installation directory (for example, C:\my_exports).

2. In the SQL Developer window, click the menu Tools.

A menu appears.

3. From menu, select Database Export.

The Source/Destination window opens.

4. In the Source/Destination window:

1. In the Connection field, select hr_conn from the menu.

2. Accept the default Export DDL options.

3. Accept the default Export Data option (selected).

4. In the Save As field, accept the default Single File and type the full path name
of the installation script file: C:\my_exports\hr_export.sql.

5. Click Next.

The Types to Export window appears. All types are selected.

5. In the Types to Export window:

1. Deselect the check boxes for all types except those that the sample application
uses, which are: Tables, Views, Indexes, Triggers, Constraints, Sequences,
Synonyms, Package Spec, and Package Body.

2. Click Next.

The Specify Objects window appears.

6. In the Specify Objects window:

1. Click More.

More fields appear, including the Schema and Type fields.

2. In the Schema field, select HR from the menu.

See Also: "Creating Triggers" on page 8-2

Note: In the following procedure, you might have to enlarge the
SQL Developer windows to see all fields and options.

Creating Installation Script Files

10-8 Oracle Database Express Edition 2 Day Developer's Guide

3. In the Type field, select TABLE from the menu.

4. Click Lookup.

The names of the tables in the HR schema appear in the left frame.

5. In the left frame, select the names of the tables that you created for the sample
application—EVALUATIONS, EVALUATIONS_LOG, PERFORMANCE_PARTS, and
SCORES.

6. Click >>.

The selected tables move to the right frame.

7. In the Type field, select SEQUENCE from the menu.

8. Click Lookup.

The names of the sequences in the HR schema appear in the left frame.

9. In the left frame, select the name of the sequence that you created for the
sample application—EVALUATIONS_SEQ.

10. Click >>.

The selected sequence moves to the right frame.

11. In the Type field, select TRIGGER from the menu.

12. Click Lookup.

The names of the triggers in the HR schema appear in the left frame.

13. In the left frame, select the names of the triggers that you created for the
sample application—EVAL_CHANGE_TRIGGER and NEW_EVALUATION_TRIGGER.

14. Click >>.

The selected triggers move to the right frame.

15. In the Type field, select PACKAGE from the menu.

16. Click Lookup.

The names of the packages in the HR schema appear in the left frame.

17. In the left frame, select the name of the package that you created for the
sample application—EMP_EVAL.

18. Click >>.

The selected package moves to the right frame, where it appears as HR.EMP_
EVAL.

19. In the Type field, select PACKAGE BODY from the menu.

20. Click Lookup.

The names of the package bodies in the HR schema appear in the left frame.

21. In the left frame, select EMP_EVAL Body.

22. Click >>.

The selected package body moves to the right frame, where it appears as
HR.EMP_EVAL.

23. In the Type field, select SYNONYM from the menu.

24. Click Lookup.

Installing the Sample Application

Deploying an Oracle Database Express Edition Application 10-9

The names of the synonyms in the HR schema appear in the left frame.

25. In the left frame, select the name of the synonym that you created for the
sample application—EMP.

26. Click >>.

The selected synonym moves to the right frame.

27. In the Type field, select VIEW from the menu.

28. Click Lookup.

The names of the views in the HR schema appear in the left frame.

29. In the left frame, select the name of the view that you created for the sample
application—EMP_LOCATIONS.

30. Click >>.

The selected view moves to the right frame.

31. Click Next.

The Specify Data window appears. The lower frame lists the objects that you
specified in the Specify Objects window.

7. In the Specify Data window:

1. In the lower frame, select every object except PERFORMANCE_PARTS (the only
sample application table to which you added data).

2. Click the upward arrow icon.

The selected objects move from the lower frame to the upper frame, indicating
that their data is not to be exported.

3. Click Next.

The Export Summary window appears.

8. In the Export Summary window, click Finish.

The Exporting window opens, showing that exporting is occurring. When
exporting is complete, the Exporting window closes, and the SQL Worksheet
shows the contents of the installation script file C:\my_exports\hr_export.sql.

9. In the installation script file, check that:

■ Referenced objects are created before their dependent objects.

■ Tables are created before data is inserted into them.

If necessary, edit the file in the SQL Worksheet or any text editor.

Installing the Sample Application

See Also:

■ "Creating an Installation Script File with SQL Developer" on
page 10-4

Note: The deployment environment must be different from the
development environment, and is assumed to be another standard HR
schema.

Checking the Validity of an Installation

10-10 Oracle Database Express Edition 2 Day Developer's Guide

If you created a single installation script file for the sample application, you can install
the sample application by connecting to the deployment environment as the user HR
and then running the installation script in either SQL*Plus or in the SQL Worksheet of
SQL Developer. The command for running the installation script has this syntax:

@full_path_name_of_installation_script_file

To run an installation script file in SQL Developer:
1. If necessary, create a connection to the deployment environment.

For Connection Name, type a name that is not the name of the connection to the
development environment.

2. Connect to Oracle Database XE as user HR in the deployment environment.

For Connection Name, enter the name of the connection to the deployment
environment.

A new pane appears. On its tab is the name of the connection to the deployment
environment. The pane has two subpanes, SQL Worksheet and Query Builder.

3. In the SQL Worksheet pane, type the command for running the installation script:

@full_path_name_of_installation_script_file

For example:

@C:\my_exports\hr_export.sql

4. Click the icon Run Script.

The script runs. Its output appears in the Script Output pane, under the
SQL Worksheet pane.

In the Connections pane, if you expand the connection to the deployment
environment, and then expand the type of each object that the sample application
uses, you see the objects of the sample application.

Checking the Validity of an Installation
After installing your application in a deployment environment, you can check its
validity in the following ways in SQL Developer:

■ In the Connections pane:

1. Expand the connection to the deployment environment.

2. Examine the definitions of the new objects.

■ In the Reports pane:

1. Expand Data Dictionary Reports.

A list of data dictionary reports appears.

2. Expand All Objects.

See Also:

■ Oracle Database SQL Developer User's Guide for more information
about running scripts in SQL Developer

■ SQL*Plus User's Guide and Reference for more information about
using scripts in SQL*Plus

Archiving the Installation Script Files

Deploying an Oracle Database Express Edition Application 10-11

A list of objects reports appears.

3. Select All Objects.

The Select Connection window appears.

4. In the Connection field, select from the menu the connection to the
deployment environment.

5. Click the icon OK.

The Enter Bind Values window appears.

6. Select either Owner or Object.

7. Click Apply.

The message "Executing Report" shows, followed by the report itself.

For each object, this report lists the Owner, Object Type, Object Name, Status
(Valid or Invalid), Date Created, and Last DDL. Last DDL is the date of the
last DDL operation that affected the object.

8. In the Reports pane (next to the Connections pane), select Invalid Objects.

The Enter Bind Values window appears.

9. Click Apply.

For each object whose Status is Invalid, this report lists the Owner, Object
Type, and Object Name.

Archiving the Installation Script Files
After verifying that the installation of your application is valid, you might want to
archive your installation script file or files in a source code control system. Before
doing so, add comments to each file, documenting its creation date and purpose. If
you ever must deploy the same application to another environment, you can use these
archived files.

See Also: Oracle Database SQL Developer User's Guide for more
information about SQL Developer reports

See Also: Oracle Database Utilities for information about Oracle Data
Pump, which enables very high-speed movement of data and
metadata from one database to another

Archiving the Installation Script Files

10-12 Oracle Database Express Edition 2 Day Developer's Guide

Index-1

Index

Symbols
%FOUND cursor attribute, 7-34
%ISOPEN cursor attribute, 7-35
%NOTFOUND cursor attribute, 7-35
%ROWCOUNT cursor attribute, 7-35
%ROWTYPE attribute, 7-30
%TYPE attribute

in CALCULATE_SCORE function, 7-18
purpose of, 7-18

A
accent-insensitive sort, 9-24
accessing Oracle Database, 1-3

See also connecting to Oracle Database
Add Check tool, 6-10
Add Foreign Key tool, 6-8
Add Primary Key tool, 6-8
Add Unique tool, 6-7
ADD_EVALUATION procedure, 7-6
AFTER trigger

statement-level example, 8-3
system example, 8-6
what it is, 8-2

aggregate conversion function in query, 4-24
alias

for column, 4-4
for table, 4-13
See also synonym

ALTER FUNCTION statement, 7-9
ALTER PROCEDURE statement, 7-9
ALTER TABLE statement

adding constraint with
Foreign Key, 6-9
Not Null, 6-7
Primary Key, 6-8

changing trigger status with, 8-7
ALTER TRIGGER statement

changing trigger status with, 8-7
recompiling trigger with, 8-8

anonymous block, 7-1
application program interface (API), 7-12
archiving installation script file, 10-11
arithmetic operator in query, 4-14
array

associative
See associative array

variable, 7-42
ASP.NET, 1-8
assignment operator (:=)

assigning initial value to constant with, 7-16
assigning value to associative array element

with, 7-42
assigning value to variable with, 7-20
See also SELECT INTO statement

associative array
declaring, 7-43
dense, 7-42
indexed by integer, 7-42
indexed by string, 7-42
populating, 7-44
sparse, 7-42
traversing

dense, 7-45
sparse, 7-47

what it is, 7-42
attribute

%ROWTYPE, 7-30
%TYPE, 7-18
cursor

See cursor attribute

B
base type, 7-4
basic LOOP statement, 7-28
BEFORE trigger

row-level example, 8-4
system example, 8-6
what it is, 8-2

block
anonymous, 7-1
parts of, 1-5

body of subprogram, 7-6
browsing HR sample schema, 3-1
built-in data type, 6-2
BULK COLLECT INTO clause, 7-44
byte semantics, 9-5

Index-2

C
C numeric format element, 9-21
calculate_score function

creating, 7-8
testing, 7-10

calendar format, 9-3
CASE expression in query, 4-29
case sensitivity

in PL/SQL identifiers, 7-3
in sort, 9-24

CASE statement, 4-29, 7-24
character function in query, 4-16
character semantics, 9-5
character set

conversion and data loss, 9-28
length semantics and, 9-5

Check Constraint
adding with Add Check tool, 6-10
what it is, 6-6

checking validity of installation, 10-10
CLR (Common Language Runtime), 1-8
collapsing displayed information in SQL

Developer, 3-2
collating sequence, 9-4
collection, 7-42
collection method

COUNT, 7-46
FIRST, 7-47
invoking, 7-42
NEXT, 7-47
what it is, 7-42

column
alias for, 4-4
new heading for, 4-4
qualifying name of, 4-13
relationship to field, 1-2
selecting specific one in table, 4-3

comment in PL/SQL code, 7-5
Commit Changes icon, 5-6
COMMIT statement

explicit, 5-6
implicit, 5-6

committing transaction
explicitly, 5-6
implicitly, 5-6

Common Language Runtime (CLR), 1-8
composite variable

collection, 7-42
record, 7-30

compound trigger, 8-2
concatenation operator in query, 4-16
conditional predicate, 8-3
conditional selection statement

CASE, 7-24
IF, 7-23
what it is, 7-22

connecting to Oracle Database
as user HR, 2-4
from SQL Developer, 2-2
from SQL*Plus, 2-1

constant
declaring, 7-16
ensuring correct data type of, 7-17
in package body, 7-15
in package specification, 7-15
local, 7-15
what it is, 7-15

constraint
adding to table

with ALTER TABLE statement, 6-7
with Edit Table tool, 6-6

application deployment and, 10-2
enabled or disabled, 6-5
types of, 6-5
viewing, 3-2
what it is, 6-5

controlling program flow, 7-22
conversion function in query, 4-22
COUNT collection method, 7-46
Create Body tool, 7-14
Create Database Synonym tool, 6-23
CREATE FUNCTION statement, 7-8
CREATE INDEX statement

changing index with, 6-15
creating index with, 6-14

Create Index tool, 6-14
CREATE PACKAGE BODY statement, 7-14
CREATE PACKAGE statement

changing package specification with, 7-13
creating package specification with, 7-12

Create PL/SQL Function tool, 7-8
Create PL/SQL Package tool, 7-12
Create PL/SQL Procedure tool, 7-6
CREATE PROCEDURE statement, 7-6
CREATE SEQUENCE statement

in general, 6-21
in installation script file, 10-6

Create Sequence tool, 6-21
CREATE SYNONYM statement, 6-23
CREATE TABLE statement, 6-4
Create Table tool, 6-3
CREATE TRIGGER statement

changing trigger with, 8-6
creating trigger with, 8-2

Create Trigger tool, 8-2
CREATE VIEW statement

changing query in view with, 6-19
creating view with, 6-18

Create View tool, 6-18
creation script

See installation script file
CURRVAL pseudocolumn, 6-20
cursor

declaring associative array with, 7-43
explicit, 7-34
implicit, 7-34
populating associative array with, 7-44
what it is, 7-34

cursor attribute
%FOUND, 7-34

Index-3

%ISOPEN, 7-35
%NOTFOUND, 7-35
%ROWCOUNT, 7-35
possible values of, 7-34
syntax for value of, 7-34
what it is, 7-34

cursor type
cursor variable

retrieving result set rows one at a time with
procedure, 7-38
tutorial, 7-39

what it is, 7-37

D
data definition language statement

See DDL statement
data integrity

See constraint
data loss during character-set conversion, 9-28
data manipulation language statement

See DML statement
Data pane, 6-12
data type

base, 7-4
built-in, 6-2
of associative array key, 7-42
of constant, 7-4
of function return value, 7-4
of subprogram parameter, 7-4
of table column, 6-2
of variable, 7-4
PL/SQL, 7-4
SQL, 6-2
SQL national character, 9-5
subtype of, 7-4
Unicode, 9-5
user-defined, 6-2

database initialization parameter, 9-6
Database Upload tool, 10-4
date format, 9-2
datetime format model, 4-22
datetime function in query, 4-19
DBMS_OUTPUT.PUT_LINE procedure, 7-24
DBMS_STANDARD.RAISE_APPLICATION_ERROR

procedure, 7-48
DDL statement

as triggering event, 8-1
in installation script file, 10-1
what it is, 6-1

decimal character, 9-19
declarative language, 1-5
declarative part

of block, 1-5
of subprogram, 7-5

DECODE function in query, 4-29
Delete Selected Row(s) tool, 6-13
DELETE statement, 5-5
DELETING conditional predicate, 8-3
deleting entire table, 6-16

deleting row from table
with Delete Selected Row(s) tool, 6-13
with DELETE statement, 5-5

dense associative array
populating, 7-44
traversing, 7-45
what it is, 7-42

dependencies between schema objects
installation and, 10-2
trigger compilation and, 8-8

deploying application, 10-1
deployment environment, 10-1
development environment

choice of, 1-5
for sample application, 2-4
what it is, 10-1

disabled trigger, 8-1
disabling triggers

in general, 8-7
all triggers in table, 8-7
in installation script file, 10-6

DISTINCT option, 4-25
DL (long date) format, 9-14
DML statement

as triggering event, 8-1
associative arrays and, 7-43
implicit cursor for, 7-34
what it is, 5-1

dot notation
for accessing record field, 7-30
for invoking collection method, 7-42

DROP FUNCTION statement, 7-11
DROP INDEX statement, 6-15, 6-16
DROP PACKAGE statement, 7-15
DROP PROCEDURE statement, 7-11
DROP SEQUENCE statement, 6-22
DROP SYNONYM statement, 6-24
DROP TABLE statement, 6-16
Drop tool

for index, 6-16
for package, 7-15
for sequence, 6-22
for synonym, 6-24, 7-11
for table, 6-16
for trigger, 8-8
for view, 6-20

DROP TRIGGER statement, 8-8
DROP VIEW statement, 6-20
DS (short date) format, 9-14
DUAL table, 4-21

E
Edit Index tool, 6-15
Edit Table tool, 6-6
Edit tool

changing standalone stored subprogram
with, 7-9

changing trigger with, 8-6
education environment, 10-1

Index-4

EMP_EVAL package
changing specification for, 7-13
creating body of, 7-14
creating specification for, 7-12

EMP_LOCATIONS view
creating, 6-18
description of, 6-17

enabled trigger, 8-1
enabling triggers

in general, 8-7
all triggers in table, 8-7
in installation script file, 10-6

ending transaction
by committing, 5-6
by rolling back, 5-8

ensuring data integrity, 6-5
environment variables, 9-7
error

See exception
EVALUATIONS table

adding constraint to
Foreign Key, 6-9
Primary Key, 6-8

adding index to, 6-14
creating, 6-4
creating sequence for, 6-21
description of, 6-3

EVALUATIONS_SEQ sequence
creating, 6-21
using, 8-4

exception handler syntax, 7-48
exception handling

in general, 7-48
for predefined exception, 7-49

EXCEPTION_INIT pragma, 7-49
exception-handling part

of block, 1-5
of subprogram, 7-5

executable part
of block, 1-5
of subprogram, 7-5

EXIT WHEN statement, 7-28
expanding displayed information in SQL

Developer, 3-1
explicit cursor

retrieving result set rows one at a time with, 7-35
what it is, 7-34

exploring Oracle Database, 3-1
expression in query, 4-14

F
FCL (Framework Class Libraries), 1-8
FETCH statement

explicit cursor and, 7-34
populating dense associative array with, 7-44

fetching results one row at a time, 7-34
field

relationship to column, 1-2
what it is, 7-30

FIRST collection method, 7-47
FOR LOOP statement, 7-25
Foreign Key constraint

adding
with Add Foreign Key tool, 6-8
with ALTER TABLE statement, 6-9

what it is, 6-5
format

calendar, 9-3
date, 9-2
datetime model, 4-22
monetary, 9-4
time, 9-2

Framework Class Libraries (FCL), 1-8
function

in query, 4-14
locale-dependent SQL, 9-8
statistical, 4-26
structure of, 7-5
what it is, 7-1
See also subprogram

G
G numeric format element, 9-19
globalization support features, 9-1

See also NLS parameters
group separator in number, 9-19
grouping query results, 4-24

H
HR sample schema

browsing, 3-1
unlocking, 2-4
what it is, 1-9

Hypertext Preprocessor (PHP), 1-6

I
icon names and keyboard equivalents, 1-4
identifier, 7-3
IF statement, 7-23
implicit COMMIT statement, 5-6
implicit cursor, 7-34
index

adding, 6-14
changing, 6-15
dropping, 6-16
implicitly created, 6-14
what it is, 1-2

index-by table
See associative array

initial value of constant or variable, 7-16
initialization parameter, 9-6
Insert Row tool, 6-11
INSERT statement

in general, 5-1
in installation script file, 10-1

INSERTING conditional predicate, 8-3
installation script file

Index-5

archiving, 10-11
creating

in general, 10-3
for sample application, 10-7

disabling and re-enabling triggers in, 10-6
editing CREATE SEQUENCE statement in, 10-6
running, 10-10
what it is, 10-1

INSTEAD OF trigger
example, 8-5
what it is, 8-2

integrity constraint
See constraint

intersecting tables, 4-13
invalidated trigger, 8-8
IW date format element, 9-3

J
JDBC (Oracle Java Database Connectivity), 1-6
joining tables, 4-13

K
keyboard equivalents of icons, 1-4
key-value pair

See associative array

L
L numeric format element, 9-20
language support, 9-2
length semantics, 9-5
linguistic sorting and string searching, 9-4
local constant, 7-15
local subprogram

in anonymous block, 7-1
in another subprogram, 7-1
in package, 7-12

local variable, 7-15
locale, 9-10
locale-dependent SQL function, 9-8
logical table

See view
long date (DL) format, 9-14
loop statement

basic LOOP, 7-28
exiting early, 7-28
FOR LOOP, 7-25
populating associative array with, 7-44
what it is, 7-22
WHILE LOOP, 7-26

M
method, 7-42
Microsoft .NET Framework, 1-8
Microsoft Visual Studio, 1-8
monetary format, 9-4
multiline comment in PL/SQL code, 7-5
multilingual applications, 9-1

N
naming convention

for PL/SQL identifiers, 7-3
for sequences, 6-20

national character set, 9-5
National Language Support (NLS), 9-1
National Language Support (NLS) parameters

See NLS parameters
native language support, 9-2
NCHAR literal replacement, 9-28
nested subprogram

See local subprogram
nested table, 7-42
.NET assembly, 1-8
.NET stored procedure, 1-8
NEW pseudorecord, 8-3
NEXT collection method, 7-47
NEXTVAL pseudocolumn, 6-20
NLS (National Language Support), 9-1
NLS environment variables, 9-7
NLS parameters

of locale-dependent SQL functions, 9-8
values of

changing, 9-7
initial, 9-6
viewing, 9-6

what they are, 9-1
NLS_CALENDAR parameter, 9-18
NLS_COMP parameter, 9-24
NLS_CURRENCY parameter, 9-20
NLS_DATE_FORMAT parameter, 9-14
NLS_DATE_LANGUAGE parameter, 9-16
NLS_DUAL_CURRENCY parameter, 9-22
NLS_ISO_CURRENCY parameter, 9-21
NLS_LANG parameter, 9-10
NLS_LANGUAGE parameter, 9-11
NLS_LENGTH_SEMANTICS parameter, 9-26
NLS_NUMERIC_CHARACTERS parameter, 9-19
NLS_SORT parameter, 9-23
NLS_TERRITORY parameter, 9-13
NLS_TIMESTAMP_FORMAT parameter, 9-17
nonprocedural language, 1-5
Not Null constraint

adding
with ALTER TABLE statement, 6-7
with Edit Table tool, 6-6

what it is, 6-5
numeric format

elements
C, 9-21
G, 9-19
L, 9-20

in different countries, 9-4
numeric function in query, 4-15
NVL function, 4-28
NVL2 function, 4-28

O
objects

Index-6

See schema object
OCCI (Oracle C++ Call Interface), 1-7
OCI (Oracle Call Interface), 1-6
ODBC (Open Database Connectivity), 1-7
ODP.NET, 1-8
ODT (Oracle Developer Tools for Visual Studio), 1-8
OLD pseudorecord, 8-3
OO4O (Oracle Objects for OLE), 1-9
Open Database Connectivity (ODBC), 1-7
OR REPLACE clause in DDL statement, 6-1
Oracle Application Express, 1-6
Oracle C++ Call Interface (OCCI), 1-7
Oracle Call Interface (OCI), 1-6
Oracle Database Extensions for .NET, 1-8
Oracle Deployment Wizard for .NET, 1-8
Oracle Developer Tools for Visual Studio, 1-8
Oracle Java Database Connectivity (JDBC), 1-6
Oracle Objects for OLE (OO4O), 1-9
Oracle Provider for OLE DB (OraOLEDB), 1-9
Oracle Providers for ASP.NET, 1-8
OraOLEDB (Oracle Provider for OLE DB), 1-9
ORDER BY clause of SELECT statement, 4-11

P
package

dropping, 7-15
reasons to use, 7-2
structure of, 7-12
what it is, 7-2

package body
changing, 7-16
creating, 7-14
what it is, 7-12

package specification
changing, 7-13
creating, 7-12
what it is, 7-12

package subprogram, 7-2
parameter

See subprogram parameter
pattern (regular expression), 4-7
PERCENT_RANK function, 4-27
PERFORMANCE_PARTS table

adding constraint to
Not Null, 6-6, 6-7
Primary Key, 6-8

adding rows to, 6-11
changing data in, 6-12
creating, 6-3
deleting data from, 6-13
description of, 6-3

PHP (Hypertext Preprocessor), 1-6
PLS_INTEGER data type, 7-4
PL/SQL block

anonymous, 7-1
parts of, 1-5

PL/SQL data type, 7-4
PL/SQL identifier, 7-3
PL/SQL language, 1-5

PL/SQL table
See associative array

PL/SQL unit, 1-5
precompiler

Pro*C/C++, 1-7
Pro*COBOL, 1-7

predefined exception
handling, 7-49
what it is, 7-48

Primary Key constraint
adding

with Add Primary Key tool, 6-8
with ALTER TABLE statement, 6-8

what it is, 6-5
private SQL area, 7-34
Pro*C/C++ precompiler, 1-7
Pro*COBOL precompiler, 1-7
Procedural Language/SQL (PL/SQL) language, 1-5
procedure

structure of, 7-5
what it is, 7-1
See also subprogram

production environment, 10-1
program flow control, 7-22
pseudorecord, 8-3

Q
qualifying column names, 4-13
query

function in, 4-14
grouping results by column, 4-24
improving readability of, 4-13
operator in, 4-14
simple, 4-1
SQL expression in, 4-14
stored

See view
what it is, 4-1

R
RAISE statement, 7-48
RAISE_APPLICATION_ERROR procedure, 7-48
RANK function, 4-27
record

creating, 7-30
creating type for, 7-31
relationship to row, 1-2
what it is, 7-30

reducing disk I/O, 6-14
REF constraint, 6-6
REF CURSOR type, 7-37
REF CURSOR variable

See cursor variable
Refresh icon

DDL statements and, 6-1
DML statements and, 5-1
rolling back transactions and, 5-8

REGEXP_COUNT function, 4-9

Index-7

REGEXP_LIKE function, 4-7, 4-8
REGEXP_REPLACE function, 4-8
regular expression in query, 4-7
RENAME statement, 6-19
Rename tool, 6-19
resetting password of HR account, 2-4
retrieving results one row at a time, 7-34
RETURN clause of function, 7-5
RETURN statement, 7-5
return type

of cursor variable, 7-37
of function, 7-4
of REF CURSOR type, 7-37

reversing transaction, 5-7
Rollback Changes icon, 5-8
ROLLBACK statement, 5-7
rolling back transaction, 5-7
row

adding
with Insert Row tool, 6-11
with INSERT statement, 5-1

relationship to record, 1-2
row-level trigger

example, 8-4
pseudorecords and, 8-3
what it is, 8-2

Run tool, 7-10
running installation script file, 10-10
run-time error

See exception

S
SAL_INFO RECORD type

creating, 7-31
creating parameter of, 7-32

SALARY_SCHEDULE procedure
creating, 7-32
invoking, 7-32

SALESFORCE view
changing name of, 6-19
changing query in, 6-19
creating, 6-18
description of, 6-17

sample application
creating API for, 7-12
creating package body for, 7-14
creating package specification for, 7-12
creating sequence for, 6-21
creating synonym for, 6-23
creating tables for, 6-3
creating triggers for

INSTEAD OF trigger, 8-5
row-level BEFORE trigger, 8-4
statement-level AFTER trigger, 8-3

creating views for, 6-17
development environment for, 2-4
installing (deploying), 10-10

sample schema HR
See HR sample schema, 1-9

SAVEPOINT statement, 5-9
schema, 1-2
schema object

dependent
installation and, 10-2
trigger compilation and, 8-8

uploading, 10-4
viewing, 3-1
what it is, 1-2

schema-level subprogram
See standalone stored subprogram

SCORES table
adding constraint to

Check, 6-10
Foreign Key, 6-8
Unique, 6-7

creating, 6-4
description of, 6-3

script
See installation script file

searched CASE statement, 7-24
SELECT INTO statement

assigning value to variable with, 7-21
associative array and, 7-43
implicit cursor for, 7-34
See also assignment operator (:=)

SELECT statement
ORDER BY clause of, 4-11
simple, 4-1
WHERE clause of, 4-5

selecting table data
in general, 4-1
and sorting it, 4-11
that matches regular expression, 4-7
that matches specified conditions, 4-5

semantics
byte, 9-5
character, 9-5
length, 9-5

sequence
creating, 6-21
dropping, 6-22
in installation script, 10-6
what it is, 6-20

sequential control statement, 7-22
setting savepoints in transaction, 5-9
short date (DS) format, 9-14
signature of subprogram, 7-5
simple CASE statement, 7-24
simple trigger, 8-2
single-line comment in PL/SQL code, 7-5
sorting

accent-insensitive, 9-24
case-insensitive, 9-24
linguistic, 9-4
selected data, 4-11

source and new tables, 10-2
sparse associative array

populating, 7-44
traversing, 7-47

Index-8

what it is, 7-42
SQL cursor (implicit cursor), 7-34
SQL data type, 6-2
SQL Developer

collapsing displayed information in, 3-2
connecting to Oracle Database from

in general, 2-2
as user HR, 2-5

expanding displayed information in, 3-1
exploring database with, 3-1
icon names and keyboard equivalents in, 1-4
initial values of NLS parameters in, 9-6
what it is, 1-4

SQL expression in query, 4-14
SQL language, 1-4
SQL national data types, 9-5
SQL pane, 6-5
SQL*Plus

connecting to Oracle Database from
in general, 2-1
as user HR, 2-5

what it is, 1-4
standalone stored subprogram

changing, 7-9
creating

function, 7-8
procedure, 7-6

dropping, 7-11
what it is, 7-2

statement-level trigger
example, 8-3
what it is, 8-2

statistical function, 4-26
stored query

See view
stored subprogram, 7-1
strong REF CURSOR type, 7-37
strongly typed cursor variable, 7-37
struct type

See record
Structured Query Language (SQL), 1-4
subprogram

body of, 7-6
local

See local subprogram
nested

See local subprogram
package, 7-2
parameter of

See subprogram parameter
parts of, 7-5
schema-level

See standalone stored subprogram
signature of, 7-5
standalone stored

See standalone stored subprogram
stored, 7-1
structure of, 7-5
what it is, 7-1

subprogram parameter

collection as, 7-42
cursor variable as, 7-37
ensuring correct data type of, 7-17
for standalone subprogram, 7-2
record as, 7-30

subquery, 4-1
subscript notation, 7-42
subtype, 7-4
synonym

creating, 6-23
dropping, 6-24
what it is, 6-22
See also alias

SYS_REFCURSOR predefined type, 7-37
system trigger

example, 8-6
what it is, 8-2

SYSTIMESTAMP function, 4-21

T
table

adding constraint to
with ALTER TABLE statement, 6-7
with Edit Table tool, 6-6

adding row to
with Insert Row tool, 6-11
with INSERT statement, 5-1

alias for, 4-13
changing data in

in Data pane, 6-12
with UPDATE statement, 5-4

creating, 6-3
deleting row from

with Delete Selected Row(s) tool, 6-13
with DELETE statement, 5-5

dropping, 6-16
ensuring data integrity in, 6-5
index on

See index
logical

See view
selecting data from

in general, 4-1
and sorting it, 4-11
that matches regular expression, 4-7
that matches specified conditions, 4-5

selecting specific columns of, 4-3
source and new, 10-2
viewing data in, 3-2
viewing properties of, 3-2
virtual

See view
what it is, 6-2

territory support, 9-2
test environment, 10-1
time format, 9-2
timing point of trigger, 8-2
trace file, 7-1
transaction, 5-5

Index-9

committing
explicitly, 5-6
implicitly, 5-6

ending
by committing, 5-6
by rolling back, 5-8

rolling back, 5-7
setting savepoints in, 5-9
visibility of, 5-6

transaction control statements, 5-5
trigger

AFTER
statement-level example, 8-3
system example, 8-6
what it is, 8-2

BEFORE
row-level example, 8-4
system example, 8-6
what it is, 8-2

changing, 8-6
compiling, 8-8
compound, 8-2
creating, 8-2
disabled, 8-1
disabling

in general, 8-7
in installation script file, 10-6

dropping, 8-8
enabled, 8-1
enabling

in general, 8-7
in installation script file, 10-6

INSTEAD OF
example, 8-5
what it is, 8-2

invalidated, 8-8
on view, 8-5
recompiling, 8-8
row-level

example, 8-4
pseudorecords and, 8-3
what it is, 8-2

simple, 8-2
statement-level

example, 8-3
what it is, 8-2

system
example, 8-6
what it is, 8-2

timing point of, 8-2
what it is, 1-3, 8-1

U
undoing transaction, 5-7
Unicode

data types for, 9-5
string literals in, 9-27
what it is, 9-5

Unique constraint

adding with Add Unique tool, 6-7
what it is, 6-5

unlocking HR account, 2-4
UPDATE statement, 5-4
UPDATING conditional predicate, 8-3
uploading schema objects, 10-4
user-defined data type, 6-2
user-defined exception, 7-48

V
validity of installation, 10-10
variable

assigning value to
with assignment operator, 7-20
with SELECT INTO statement, 7-21

composite
collection, 7-42
record, 7-30

cursor
See cursor variable

declaring, 7-16
ensuring correct data type of, 7-17
in package body, 7-15
in package specification, 7-15
local, 7-15
what it is, 7-15

variable array (varray), 7-42
view

changing name of, 6-19
changing query in, 6-19
creating, 6-17
dropping, 6-20
trigger on, 8-5
what it is, 6-17

viewing schema object, 3-1
viewing table data, 3-2
viewing table properties, 3-2
virtual table

See view
visibility of transaction, 5-6
Visual Studio, 1-8

W
weak REF CURSOR type, 7-37
WHEN OTHERS exception handler, 7-48
WHERE clause of SELECT statement, 4-5
WHILE LOOP statement, 7-26

Index-10

	Contents
	List of Examples
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	About Oracle Database Express Edition Developers
	About This Document
	About Oracle Database XE
	About Schema Objects
	About Oracle Database XE Access
	About SQL*Plus
	About SQL Developer
	About Structured Query Language (SQL)
	About Procedural Language/SQL (PL/SQL)
	About Other Client Programs, Languages, and Development Tools
	Oracle Application Express
	Oracle Java Database Connectivity (JDBC)
	Hypertext Preprocessor (PHP)
	Oracle Call Interface (OCI)
	Oracle C++ Call Interface (OCCI)
	Open Database Connectivity (ODBC)
	Pro*C/C++ Precompiler
	Pro*COBOL Precompiler
	Microsoft .NET Framework
	Oracle Provider for OLE DB (OraOLEDB)
	Oracle Objects for OLE (OO4O)

	About Sample Schema HR

	2 Connecting to Oracle Database Express Edition
	Connecting to Oracle Database XE from SQL*Plus
	Connecting to Oracle Database XE from SQL Developer
	Connecting to Oracle Database XE as User HR
	Unlocking the HR Account
	Connecting to Oracle Database XE as User HR from SQL*Plus
	Connecting to Oracle Database XE as User HR from SQL Developer

	3 Exploring Oracle Database Express Edition with SQL Developer
	Tutorial: Viewing HR Schema Objects
	Tutorial: Viewing EMPLOYEES Table Properties and Data

	4 Selecting Table Data
	About Queries
	Running Queries in SQL Developer
	Tutorial: Selecting All Columns of a Table
	Tutorial: Selecting Specific Columns of a Table
	Displaying Selected Columns Under New Headings
	Selecting Data that Satisfies Specified Conditions
	Specifying Conditions with Regular Expressions
	Sorting Selected Data
	Selecting Data from Multiple Tables
	Using Operators and Functions in Queries
	Using Arithmetic Operators in Queries
	Using Numeric Functions in Queries
	Using the Concatenation Operator in Queries
	Using Character Functions in Queries
	Using Datetime Functions in Queries
	Using Conversion Functions in Queries
	Using Aggregate Functions in Queries
	Using NULL-Related Functions in Queries
	Using CASE Expressions in Queries
	Using the DECODE Function in Queries

	5 About DML Statements and Transactions
	About Data Manipulation Language (DML) Statements
	About the INSERT Statement
	About the UPDATE Statement
	About the DELETE Statement

	About Transaction Control Statements
	Committing Transactions
	Rolling Back Transactions
	Setting Savepoints in Transactions

	6 Creating and Managing Schema Objects
	About Data Definition Language (DDL) Statements
	About Schema Object Names
	Creating and Managing Tables
	About SQL Data Types
	Creating Tables
	Tutorial: Creating a Table with the Create Table Tool
	Creating Tables with the CREATE TABLE Statement

	Ensuring Data Integrity in Tables
	About Constraint Types
	Tutorial: Adding Constraints to Existing Tables

	Tutorial: Adding Rows to Tables with the Insert Row Tool
	Tutorial: Changing Data in Tables in the Data Pane
	Tutorial: Deleting Rows from Tables with the Delete Selected Row(s) Tool
	Managing Indexes
	Tutorial: Adding an Index with the Create Index Tool
	Tutorial: Changing an Index with the Edit Index Tool
	Tutorial: Dropping an Index

	Dropping Tables

	Creating and Managing Views
	Creating Views
	Tutorial: Creating a View with the Create View Tool
	Creating Views with the CREATE VIEW Statement

	Changing Queries in Views
	Tutorial: Changing View Names with the Rename Tool
	Dropping Views

	Creating and Managing Sequences
	Tutorial: Creating a Sequence
	Dropping Sequences

	Creating and Managing Synonyms
	Creating Synonyms
	Dropping Synonyms

	7 Developing Stored Subprograms and Packages
	About Stored Subprograms
	About Packages
	About PL/SQL Identifiers
	About PL/SQL Data Types
	Creating and Managing Standalone Stored Subprograms
	About Subprogram Structure
	Tutorial: Creating a Standalone Stored Procedure
	Tutorial: Creating a Standalone Stored Function
	Changing Standalone Stored Subprograms
	Tutorial: Testing a Standalone Stored Function
	Dropping Standalone Stored Subprograms

	Creating and Managing Packages
	About Package Structure
	Tutorial: Creating a Package Specification
	Tutorial: Changing a Package Specification
	Tutorial: Creating a Package Body
	Dropping a Package

	Declaring and Assigning Values to Variables and Constants
	Tutorial: Declaring Variables and Constants in a Subprogram
	Ensuring that Variables, Constants, and Parameters Have Correct Data Types
	Tutorial: Changing Declarations to Use the %TYPE Attribute
	Assigning Values to Variables
	Assigning Values to Variables with the Assignment Operator
	Assigning Values to Variables with the SELECT INTO Statement

	Controlling Program Flow
	About Control Statements
	Using the IF Statement
	Using the CASE Statement
	Using the FOR LOOP Statement
	Using the WHILE LOOP Statement
	Using the Basic LOOP and EXIT WHEN Statements

	Using Records and Cursors
	About Records
	Tutorial: Declaring a RECORD Type
	Tutorial: Creating and Invoking a Subprogram with a Record Parameter
	About Cursors
	Using an Explicit Cursor to Retrieve Result Set Rows One at a Time
	Tutorial: Using an Explicit Cursor to Retrieve Result Set Rows One at a Time
	About Cursor Variables
	Using a Cursor Variable to Retrieve Result Set Rows One at a Time
	Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a Time

	Using Associative Arrays
	About Collections
	About Associative Arrays
	Declaring Associative Arrays
	Populating Associative Arrays
	Traversing Dense Associative Arrays
	Traversing Sparse Associative Arrays

	Handling Exceptions (Run-Time Errors)
	About Exceptions and Exception Handlers
	Handling Predefined Exceptions
	Declaring and Handling User-Defined Exceptions

	8 Using Triggers
	About Triggers
	Creating Triggers
	About OLD and NEW Pseudorecords
	Tutorial: Creating a Trigger that Logs Table Changes
	Tutorial: Creating a Trigger that Generates a Primary Key for a Row Before It Is Inserted
	Creating an INSTEAD OF Trigger
	Tutorial: Creating Triggers that Log LOGON and LOGOFF Events

	Changing Triggers
	Disabling and Enabling Triggers
	About Trigger Compilation and Dependencies
	Dropping Triggers

	9 Working in a Global Environment
	About Globalization Support Features
	About Language Support
	About Territory Support
	About Date and Time Formats
	About Calendar Formats
	About Numeric and Monetary Formats
	About Linguistic Sorting and String Searching
	About Length Semantics
	About Unicode and SQL National Character Data Types

	About Initial NLS Parameter Values
	Viewing NLS Parameter Values
	Changing NLS Parameter Values
	Changing NLS Parameter Values for All SQL Developer Connections
	Changing NLS Parameter Values for the Current SQL Function Invocation

	About Individual NLS Parameters
	About Locale and the NLS_LANG Parameter
	About the NLS_LANGUAGE Parameter
	About the NLS_TERRITORY Parameter
	About the NLS_DATE_FORMAT Parameter
	About the NLS_DATE_LANGUAGE Parameter
	About NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT Parameters
	About the NLS_CALENDAR Parameter
	About the NLS_NUMERIC_CHARACTERS Parameter
	About the NLS_CURRENCY Parameter
	About the NLS_ISO_CURRENCY Parameter
	About the NLS_DUAL_CURRENCY Parameter
	About the NLS_SORT Parameter
	About the NLS_COMP Parameter
	About the NLS_LENGTH_SEMANTICS Parameter

	Using Unicode in Globalized Applications
	Representing Unicode String Literals in SQL and PL/SQL
	Avoiding Data Loss During Character-Set Conversion

	10 Deploying an Oracle Database Express Edition Application
	About Deployment Environments
	About Installation Script Files
	About DDL Statements and Schema Object Dependencies
	About INSERT Statements and Constraints

	Creating Installation Script Files
	Creating an Installation Script File with SQL Developer
	Editing Installation Script Files that Create Sequences
	Editing Installation Script Files that Create Triggers
	Tutorial: Creating an Installation Script File for the Sample Application

	Installing the Sample Application
	Checking the Validity of an Installation
	Archiving the Installation Script Files

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

